Contents

WhatisICOS?ttt ... 2
A MetaOSs for the Continuum)
The ICOS Architecture 4
Thel€OS Controller 4
TheICOSAgent 9
Data Management 10
UBNCOS ... G e 10
AR SR 1
B . . e 1

This project has received funding
from the European Union’s
HORIZON research and innovation
programme under grant
agreement No 101070177.

»>ICOS

Whatis ICOS?

The next wave of transformation in
computing systems architecture is driven

by the rapid development of computing

and sensing device technologies and the
ever-growing demand for data-intensive
applications in the edge and cloud. This leads
to the paradigm shift of computing being
centered around dynamic, intelligent and

yet seamless interconnection of IoT, edge
and cloud resources in
one computing system, to
form a continuum. Various
instantiations of such a
continuum, referred also
as cloud continuum, loT
continuum, edge-to-
cloud or fog-to- cloud,
are expected to provide
the means for real-time or

|

£

~

offline data processing, both at the edge and
cloud.

ICOS represents an loT2Cloud meta-
Operating System that aims to manage the
continuum by providing a framework that will
be extensible, open, secure, adaptable, Al-
powered as well as well highly performant and
technology agnostic. ICOS aims at achieving
a balanced combination
of both cloud and edge

oy computing capabilities,
according to the specific
,@M requirements of the
I '\‘fﬂ considered workloads,

to facilitate easy and
transparent use of the
available resources,
by providing efficiency,
interoperability,
robustness, and also
ensuring security.

A MetaOS for the Continuum

A typical cloud continuum scenario includes
a certain number of high performance cloud
computing facilities, either public or private,
and a number of devices at the edge, with
various levels of computing capacity. Cloud
computing facilities provide unlimited and
ubiquitous computing and storage capacity,
but their remoteness becomes a challenge,
since user data must be transported to the
cloud and, therefore, applications expose
high latency inherent to distance, while users

Private
_ oneCloud

o
On-Prem Data Lakes
Public Cloud
aws
~—

A

.
[

Multi-Cloud
Storage & Analysis

Figure 1. Typical continuum scenario.

lose their privacy. Alternatively, devices at

the edge, such as local data centers, servers,
or even nedrby computing devices such as
smartphones, in-car computers, or embedded
computing facilities around the city, provide
limited computing capacity, but their
neighboring location reduces network data
transfer and latency, and it preserves data
privacy. A typical cloud continuum scenario is
illustrated in Fig. 1.

Private
oneCloud
& ===

on Data Lakes

at
Public Cloud

A O
[T

A balanced combination of the capabilities
of both technologies, cloud and edge
computing, according to the specific
requirements of the workloads considered,

is essential for an efficient and effective
management of the continuum. But this is
not an easy task: several critical and complex
challenges must be addressed. For instance,
and just to name a few:

= The continuum is made up of a large
number of heterogeneous computing devices
and systems, some of which are dynamically
joining and leaving the system. This requires
a sophisticated resource management
mechanism, maintaining up-to-date
information about the resource catalog,

their technological characteristics, their
interconnection topology, and their real-time
availability.

= Containerization is the trending technology
that allows an application to run on different
nodes with different architectures and
operating systems. However, there are
different platforms for managing containers
at runtime, with Kubernetes and Docker being
the most popular, but not the only existing
technologies. Transparent application
execution across the continuum requires
each application to be executable on any
node, regardless of the containerization
technology on that node.

= This problem becomes more challenging
when dealing with multicomponent
applications, where different components

of the same application might eventually be
allocated on different nodes with different
technologies. Each component should have
the option to be offloaded to any node, and all
components should be able to communicate
and coordinate transparently, regardless of
the local host technology.

= Data can be produced, consumed, and
stored, at any node in the continuum.
Furthermore, data will be live, so they could
be transferred, transformed and/or replicated
along the continuum, as long as privacy
constraints are guaranteed. Effective and
transparent data management mechanisms
must be provided.

= In such a complex and heterogeneous
scenario, deciding the optimal workload
placement (scheduling) along the continuum
is a major challenge. Solutions need to
balance the advantages of the cloud (more
capabilities) and the edge (closer data),
consider the interrelationship between the

different application components, and
consider the flow of data between the
distributed nodes during runtime. Furthermore,
solutions should be dynamic (rescheduling)

in order to react in case some execution issue
limits the expected performance.

= In the continuum there are a large number
of devices generating huge amounts of

data. In this context, a large number of
decisions must be constantly taken. This is a
perfect scenario where intelligence might be
generated and consequently used to support
the multiple decision-making processes
along the continuum. A seamless integration
of an intelligence layer in the cloud continuum
is of utmost importance.

= And finally, by conceiving an open, dynamic,
mobile, and highly alive environment like the
continuum, the door is opened to a huge

span of unforeseen security risks. A thorough
security architecture design and seamless
integration with the continuum will be critical
for the secure success of a metaOs in the
continuum.

ICOS has been designed to facilitate the

user to interact with a single system and
manage their applications, regardless of
where the individual workloads are being run.
The user merely states what properties the
components of each application need, e.g.,

a certain amount of compute resources, a
minimum security level, or a connection to
specific IoT devices, while ICOS takes care

of the placement of each component as

well as their interconnection even across
cluster boundaries if necessary. Placing these
components not only requires knowledge of
the node’s connected devices, their compute
resource utilization, and other potentially
dynamic properties but also demands

the ability to foresee the changes in these
dimensions after the components have

been deployed. This requires ICOS to employ
sophisticated matchmaking and prediction
capabilities to anticipate the foreseeable
future whenever components have to be
placed on compute nodes. In addition,
advanced features for sophisticated decision-
making like user-defined policies, forecast
metrics, and ML model creation are needed for
the MetaOS to be able to fulfill the demanding
task of application placement across such a
vast number and range of hardware.

»ICOS

»>ICOS

The ICOS Architecture

The ICOS MetaOS for the continuum has been
designed with two main roles: Controllers

and Agents. ICOS Controllers are at the core
of systemn management, and have two main
responsibilities: managing the resources along
the continuum and providing an efficient and
effective execution environment. ICOS Agents
represent an ICOS driver that runs along the
continuum and becomes the single point

of management on the computing devices
(nodes) attached to them.

An ICOS system requires at least one
Controller to be responsible for managing the
continuum and taking the runtime decisions.
However, ICOS has been designed as a multi-
controller system. This means that more

than one Controller could cooperate in the
management of ICOS. Agents are the ICOS
point of management on the computing
nodes (either in the cloud or at the edge).

299,

Multi-Cloud

One or more nodes are attached to an Agent,
and one or more Agents are connected to

a Controller. Fig. 2 shows an illustration of a
typical ICOS instance. In this figure, a set of
more or less powerful computing devices
(nodes) can be seen at the edge, which are
attached to different Agents (one Agent can
be mqnagmg several nodes). In addition,
one cluster in the cloud is also attached to
an Agent. Finally, all agents are connected
to a controller, who will be responsible for
managing the continuum.

Next, the ICOS Controller and ICOS Agent are
described.

oneCloud

.
S

On-Prem Data Lakes

Public Cloud
aws
SN—"7

A O

[T

B0
O

Storage & Analysis

% @@

Figure 2. Sample ICOS scenario

The ICOS Controller

The ICOS Controller is designed with a three-
layer architecture. As illustrated in Fig. 3, the
Meta-Kernel Layer handles all tasks related to
continuum management, as well as runtime
decision-making and management. It is

also responsible for collecting and storing
telemetry data from the infrastructure via the
Agents.

The Intelligence Layer processes this
telemetry data, providing the Meta-Kernel

Layer with the intelligence needed for both
continuum and runtime management
decisions. It also offers predictive monitoring
to anticipate various runtime events, such
as resource utilization, network load, and
potential security risks. Additionally, this
layer manages the training and retraining
processes through federated learning

<

nnnnn

0.cofig &

ICOSiAgent
Operator

to ensure the continuous update of the
intelligence model.

Lastly, the Security Layer focuses on identity
and access management, maintaining
trusted and encrypted communication
channels, and detecting security-related risks,
including vulnerabilities, threats, anomalies,
and events such as audits.

The Meta-Kernel Layer

The ICOS Meta-Kernel Layer is responsible
for continuum and runtime management,
as well as telemetry collection and
management. Fig. 4 illustrates the
architecture of the ICOS Controller Meta-
Kernel Layer, which is organized into three
main blocks: Continuum Management,
Runtime Management, and the Telemetry
Controller.

The Continuum Management block has
been designed through two components:

= Resources Onboarding component is a
functional element responsible for facilitating
the onboarding process of ICOS Agents and
edge devices. The onboarding workflow of

an ICOS Agent is illustrated in the diagram
below.

——1want o know all Agents connoctod

1COS Controlier
Operator

1COS Controller

“Inteligence"
S

2.1
1COS Lighthouse <— +ail
Aggregator

ote M

1COS 1AM

icos-shell agentjoin 1COS Agent

\\\\\

2. got Kes crods

| open Tetemetry Cotector

Figure 5.1COS Agent onboarding.

(Security Layer

3
(Intelligence Layer

Meta-Kernel Layer

Runtime
management

Continuum
management

Telemetry Controller

Figure 3. Three-layer architecture for the ICOS
Controller

Meta-Kernel Layer: CONTROLLER

Continuum
management

Runtime
management

Resources
Onboarding

Job Manager

Matchmaker

Aggregator

Policy Manager

Telemetry Controller

LI

-

Figure 4. The ICOS Controller Meta-Kernel Layer

The main steps of the onboarding process
are as follows: the ICOS Agent Operator
prepares a set of credentials to be used by
the ICOS Agent for secure communication
with the ICOS Controller and a specific
instance of the orchestrator. The operator
then executes the icos-ops agent join
command using the provided configuration.
The resulting Helm chart configuration
parameters must subsequently be used to
deploy the ICOS Agent.

The onboarding procedure for an edge
device largely depends on the type of Cloud-
Edge Orchestrator employed. Within the ICOS
project, both Open Cluster Management
(OCM) and Nuvla have been integrated as
orchestrators. Each orchestrator offers a
distinct onboarding mechanism for edge
and cloud resourcesktypically devices
equipped with a Container Orchestration
Engine (COE), such as Docker or Kubernetes,
or stand-alone COE installations.

« The Aggregator (AGR) component
provides a unified view of the infrastructure’s
static and dynamic characteristics across
the ecosystem architecture. It collects

and exposes resource information such

as performance, availability, connected
peripheral hardware, system metadata

and deployed applications. It also obtains
forecasted metrics (CPU usage mainly) to
provide enhanced view of the current and
future resources utilization.

This information is structured and made
accessible via a web API, which is primarily
consumed by the Match Maker service to
support intelligent resource allocation. It is
implemented in Go and interacts directly
with Thanos (the centralized telemetry hub)
to retrieve real-time metrics from the ICOS
ecosystem. The component’s functionality
and output have been validated through
integration with the ICOS Testbed, ensuring
alignment with the actual deployed
infrastructure and seamless integration with
the matchmaking service.

The Runtime Management block has been
implemented through three components:

« The Job Manager (JM) is the runtime

core component in charge of managing

the job lifecycle. It receives requests for
application execution and manages all steps
to the application deployment, including
finding the appropriate nodes to offload the
execution and interfacing with the application
deployment component. The JM keeps track
of the application execution through the entire
lifecycle and maintains a database with all
jobs state information.

The JM is also responsible to organize

any eventual task rescheduling in case of
underperformance or policies violation. When
the Policy Manager (described later) detects
any runtime anomaly, it enforces policies by
informing the JM to execute the user-defined
remediation actions, such as application
rescheduling or scaling up and down.

» The Match Maker (MM) is the component
responsible to find the most appropriate
nodes along the continuum to execute an
application. It is triggered by the JM upon an
execution request and returns the optimal
<app-nodes> mapping to the same JM. In
order to retrieve the available resources and
topology, the MM requests a snapshot of the
continuum to the AGR.

An application execution request is configured
through an App Descriptor manifest, a

user defined yaml file that describes the
components of the application. Components
are workload units that can be executed

in any node, and must be containerized

to facilitate offloading to any node in the
continuum. Virtualization technologies
currently considered in ICOS are kubernetes
and docker compose.

App descriptors contain the following
information:

« Component requirements, including
hardware features (RAM, CPU architecture,
GPU, ..) and I/O requirements (data

volumes, lIoT devices,) Components
could be forced to be allocated into
a specific node through a node-label
constraint.

+ Component policies allow to specify
objective metrics used for optimal
mapping, which can be based on
performance, power consumption, node
security, or a combination of these. Policies
can also be dynamic and flexible user
defined rules that influence application
deployment and their behavior.

« Component and inter-component
dependencies description, to provide
knowledge of the communication flow
between components and help configuring
the intercluster application execution
through ClusterLink.

The MM can also handle application
redeployment. When the Policy Manager
(next component) detects underperformance
or policies violation, the anomaly can be
remediated by migrating the application into
a more suitable node.

« The Policy Manager (also known as the
Dynamic Policies Manager, DPM) is a key
ICOS component that ensures the system
meets desired efficiency, performance, and
security thresholds. It works throughout the
entire application lifecycle—from deployment
to decommissioning—enforcing policies
consistency at each stage. The key features
include:

+ Flexible Policy Model: Allows for the
definition of various policies related to
performance, security, and efficiency for
both applications and infrastructures.

« Continuous Monitoring: The system is
constantly monitored through the ICOS
telemetry framework.

*» Non-conformance Detection: Identifies
deviations from set standards and triggers
notifications for corrective actions.

« Policy Enforcement: Enables automatic
corrective measures to restore or optimize
performance.

A key strength of the DPM is its tight
integration with the ICOS telemetry framework.
Policies are translated into queries for metrics
within the telemetry system, allowing the DPM
to continuously evaluate policy enforcement
with up-to-date data and quickly react to
violations.

And finally, the Telemetry Controller (TC),
implements the cloud-native monitoring and
observability strategies for ICOS. It features a
highly distributed architecture, which scales
in accordance with the distribution of ICOS
resources. As depicted in Fig. 6, the module
consists of three distinct sub-modules, each

-

>ICOS

playing a specific role and requiring deployment in
different parts of the system:

= Telemetry Controller: Deployed in the ICOS
Controller, this sub-module receives and
aggregates data (metrics and logs) from alll
the nodes registered with that controller. It is
responsible for the long-term storage of these
metrics and provides tools for analyzing the
collected data.

= Telemetry Agent. It is deployed in the
computational resources &.g., edge devices,
clusters) available to ICOS. This component is
responsible for the collection of metrics and logs.

= Telemetry Gateway. It is deployed in the ICOS
Agent and is responsible for collecting all metrics
and logs for that agent.

The Telemetry Agent and the Telemetry Gateway
are described in more detail in section 3.2 as part
of the ICOS Agent description.

ICOS Controller

Telemetry
Controller

Telemetry
Gateway

——

|

Telemetry Agent Telemetry Agent Telemetry Agent

Figure 6. Telemetry Controller architecture.

The TC serves as the primary data source for other
ICOS components within the Controller, providing
insights into the behavior of ICOS infrastructure and
applications. Specifically:

= The Aggregator queries the TC to build a system
topology, which includes the characteristics and
relationships of available nodes. This topology

is fundamental for the matchmaking and
orchestration mechanisms within ICOS.

= The Policy Manager queries the TC to assess the
enforcement of active policies.

= The ICOS Shell can submit queries to the TC
on behalf of the user to generate charts and
dashboards for visualization.

»>ICOS

The Intelligence Layer

The ICOS Intelligence Layer provides advanced Al-
driven capabilities across the cloud continuum. It
consists of five main modules: (i) Intelligence Layer
Coordination, (i) Al Analytics, (i) Data Processing,
(iv) Trustworthy Al, and (v) the Al Models and Data
Repository. Each module ensures the seamless
integration of data pipelines, model training,

and inference, ultimately enabling proactive and
optimized resource usage within ICOS.

= The Intelligence Layer Coordination orchestrates
the end-to-end Al lifecycle. It exposes two core
components: (i) a frontend (Export Metrics API),
which receives requests from the ICOS Shell to
generate forecasts and train new models; and (ii)
a backend (Intelligence API), which manages the
model registry, handles versioning, and coordinates
training jobs and inference tasks. This coordination
ensures that model updates, metadata, and
telemetry are consistently integrated with other
ICOS components.

= The Al Analytics module is responsible for model
training, inference, and performance optimization.
It supports both univariate and multivariate
time-series forecasting, enabling simultaneous
predictions of metrics like CPU and memory usage.
The module also features model compression
techniques - quantization and knowledge
distillation - to reduce computational overhead,
while MLFlow integration facilitates experiment
tracking and advanced model performance
analysis.

= The Data Processing module offers streamlined
data pipelines to access distributed datasets

and offload large-scale training across the ICOS
infrastructure. It interacts with Data Management
to seamlessly integrate stored and real-time data,
ensuring that the Intelligence Layer can efficiently
handle diverse data sources, including those
needed for federated learning scenarios.

= The Trustworthy Al module enhances
transparency, reliability, and privacy. It integrates
SHAP-based explainability to illustrate how models
reach their predictions, supports federated learning
for privacy-aware training, and logs confidence
intervals in model outputs. By continuously
monitoring model behavior and performance, it
ensures that decision-making in the Intelligence
Layer remains robust and trustworthy.

= The Al Models and Data Repository, hosted
outside the ICOS Controller, serves as the primary
store of pre-trained models and associated
datasets. It supports model sharing, discovery,
and versioning, facilitating collaboration among
developers and enabling the Intelligence Layer
Coordination module to import and export models
for broader use within the ICOS ecosystem.

The Security Layer

The ICOS Security Layer is responsible for
guaranteeing the security of ICOS users, resources,
and applications at all times. It includes modules
for authentication and authorization operations

in the system, oss§ing the security of resources

7

Anomaly |
A e Telemetry Controlle
| Detection | i

and applications and suggesting remediation or
mitigation actions, proactive discovery of anomalous
behaviours and security-sensitive events, and
verification of the compliance of resources and
applications. Trust (identity validation) and Privacy
(anonymization and encryption) are included as
architecture-wide functionalities.

ICOS Controller ICOS Node

[Telemetry Agent

Audit

: Audit server <— agent

Security. : Trusted and
Goordination 1 secure
module API : communioation - | 1
$ ' K8 cluster

i
I
|

: i

2 3 :

Security Scan - 1COS Agent [
server i i
: | | ‘Securty Soan
)

agent

Intelligence
Coordination module
API
Anomaly detection
API-2

Figure 7. Security layer components and functionalities in ICOS

= The Security Layer Coordination module API acts
as areverse proxy service to forward requests from
the Telemetry for the security scans performed

by the Security Scan module sends Security Scan
results as security metrics back to the Telemetry
Controller.

= The Security Scan module is delegated to actively
check for security issues on the ICOS nodes and
report these issues to the Telemetry Controller and
to the ICOS user, as well as to check the security

of deployed ICOS modules and components. It
integrates the Wazuh security platform to detect
vulnerabilities (CVE), misconfigurations (CIS
benchmark) and malware on the ICOS nodes. For
checking the ICOS modules and components, it
uses Trivy, a container image scanner that scans
images for vulnerabilities (CVE), laC issues and
misconfigurations and SBOM (host OS packages
and software dependencies). Trivy is integrated in
the ICOS CI/CD as a security check all ICOS services
must pass before their code is published on the ICOS
developer repository.

= Identity and Access Management is a key
component of the ICOS architecture, responsible
for ensuring that authorised individuals have
appropriate access to system resources. In the
context of ICOS, these individuals are either users
who interact with the ICOS MetaOS (including
Application Integrators and Infrastructure Providers)
or other services (part of ICOS or external). The
resources to be protected are the ICOS services.

It has three keys’ functions: i) Management of
Identities permissions, i) Authentication of users, iii)
Authorisation of requests. It has been implemented
using Keycloak, an open-source IAM software that
supports OIDC4 and OAuth 2.0 protocols.

= The Anomaly Detection module is implemented
using an Al-based log monitoring solution (LOMOS).

»>ICOS

Traditional log monitoring solutions are limited to
rule-based (manual) analysis of time series data.
In contrast, LOMOS makes use of deep learning
methods, such as Mask Language Modelling,
common in self-supervised NLP, and Hypersphere
Volume Minimisation, to model log streams

and capture their normal operating conditions.
Without manual pre-processing of raw logs from
unstructured data, LOMOS is able to identify patterns
in logs and identify anomalous behaviour, including
potential security threats.

= The Audit module in the scope of ICOS aims to
provide a robust security auditing solution that
integrates Trivy for security scanning, Tetragon

for runtime behaviour monitoring, and finally a
Prometheus exporter for auditing metrics collection.

Trivy provides a first layer of auditing on a given
application by analysing an application manifest
and its container images. This analysis covers
security aspects that relate on what privileges

are granted by the current configuration and how
much they comply with best security practices for
containerised environments by providing a severity
score.

Tetragon is able to perform real time monitoring on
events emitted by the kernel using eBPF (Extended
Berkeley Packet Filter) and produce audit logs on
those events. Since kernel events are emitted in

high volumes, Tetragon is using Trivy’s analysis as a
baseline in order to produce real time audit logs that
focus on the security aspects identified by Trivy.

Prometheus exporter is forwarding the produced
audit logs to the Telemetry Controller to be used by
the Policy manager to monitor compliance of the
running application and to notify Job manager if the
policy violation occurred and remediation action is
needed.

= Trustis implemented as an architecture-wide
functionality in ICOS, present at three levels:

« In identification and encrypted communication
between ICOS components located inside the
Controller and ICOS components located inside
the Agent using Cilium as CNI (Container Network
Interface) with VPN encryption technologies (e.g.,

Wireguard).

« In identification and encrypted communication
between ICOS components in the ICOS Controller
and in the ICOS Agent using certificates (step-ca
as self-signed Certificate Authority) and (m)TLS.

« In identification and encrypted communication
between ICOS users and ICOS components using
VPN technologies (e.g., Wireguard).

https://github.com/wazuh
https://github.com/aquasecurity/trivy
https://www.keycloak.org
https://openid.net
https://oauth.net/2
https://tetragon.io
https://prometheus.io
https://ebpf.io
https://ebpf.io
https://cilium.io
https://www.wireguard.com
 https://github.com/smallstep/certificates

The ICOS Agent

The ICOS Agents implements an ICOS driver
that runs along the continuum and becomes
the single point of management on the

computing devices (nodes) attached to them.

Fig. 8 illustrates the architecture of the ICOS
Agent.

The Deployment Manager (DM) is a
component responsible for executing user-
defined application deployment tasks on
target Container Orchestration Engine (COE)
clusters. It serves as a bridge between

the ICOS Job Manager and the underlying
orchestrators that manage collections of
edge and cloud resources.

The ICOS project integrates two orchestrators
—Open Cluster Management (OCM)

and Nuvla— each requiring a dedicated
implementation of the Deployment Manager.
As a result, two distinct versions of the DM
have been developed to interface with their
respective orchestrators. The example below
on Figure 8 illustrates the DM'’s operation with
the Nuvla orchestrator. Deployment-related
tasks (such as create, get, or terminate) are
initiated by the user and processed by the
Job Manager, which transforms them into
executable jobs. The DM is then responsible
for forwarding these tasks to the orchestrator,
monitoring their execution, and reporting the
status and results back to the Job Manager.

The App Setup Manager (ASM) is a
component that enables applications

to become aware of changes in their
deployment. Thus, applications can react to
them and their containers can adapt their
configuration accordingly. To facilitate this,
the ASM uses a messaging bus to broadcast
information about all containers deployed for
an application, including their locations.

Applications that wish to leverage this feature
of the ICOS meta-0S can subscribe to specific
topics on the bus. Each component’s topology
is associated with a distinct topic, enabling
fine-grained control over the information an
application receives. For example, containers
supporting a component can be notified

only about changes in other containers
belonging to the same component. This is
exactly the case for applications building on
the distributed and parallel execution (D&PE)
component.

This mechanism is particularly useful for
applications building on the Distributed and
Parallel Execution (D&PE) component. To
distribute computational workloads across
multiple replicas, the D&PE runtime in each
container dynamically reconfigures itself,
adapting to the current set of available

ICOS

r Y
Meta-Kernel Layer: AGENT

Deployment
Menager

Onboarding
Manager

App Selup
Manager

Telemetry
Gatewiay

& ¥
Figure 8. Architecture of the ICOS Agent

O

UJer

=

submit deployment task

|ICOS Controller l

Aggregator JM
A

https://controller.ucl.eu

—>»| Matchmaker

QoTC
=

1ICOS Node
'K8s cluster

1 |ICOS Agent

Telemetry GW ---—--: get deployment task

Deployment
Manager

invoke deployment task https://nuvla-one.agent.ucl.eu

Orchestrator
Nuvia

https://nuvla-one.ucl.cu

Figure 9. Deployment Manager qcting)qs a connector between

the ICOS Controller (Job Manager) and the cloud-edge
orchestrator (example: Nuvla)

resources where it can offload parts of the
workload effectively.

As anticipated in the Meta-Kernel Layer
section, at the ICOS Agent level, telemetry
data is collected and processed by two
sub-modules: the Telemetry Agent and the
Telemetry Gateway.

= The Telemetry Agent, deployed on
computing resources like edge devices or
virtual machines, collects metrics and logs
directly from the source. It monitors system
performance (e.g. CPU, memory, network),
energy efficiency (e.g., power consumption
of nodes and/or individual processes), and
security status (e.g., security assessment
results, audit logs, and other security-related
information) using custom modules and

third-party plugins. It's highly configurable
to suit diverse environments, including low-
resource ICOS devices. The Telemetry Agent
does not store data but forwards it to the
Telemetry Gateway.

« The Telemetry Gateway (TG) is deployed
on the ICOS Agent and has been introduced
in the ICOS Architecture primarily to enable
the collection of telemetry data in the ICOS
Agent, address networking issues (e.g., edge
devices being unable to reach the Telemetry
Controller directly due to firewalls or NAT), and
aggregate and optimize the processing of
telemetry data (e.g, discarding unnecessary
metrics and reducing the amount of data sent
to the controller).

Data Management

Data Management is a challenging aspect
of the ICOS project due to the distributed
nature of the computing continuum. Being
able to address the data requirements of
ICOS components and ensuring a smooth
operation across the continuum lifecycle are
key aspects of the stability and scalability of
ICOS.

There are several architectural decisions on
the Data Management that have been key
for the successful implementation of the ICOS
project:

= A horizontal bus across the computing
devices. This bus is key to offer an up-to-date
view of the topology of applications. User
applications are able to query and leverage
the distributed nature from their application
deployments (e.g. for coordinating parallel
and distributed workloads).

= An distributed active storage system to be
used by the Intelligence layer. This storage

system'’s goal is to solve all the requirements
related to data and computation from the
intelligence workloads —in the context of a
distributed edge-cloud environment. The
use of an active system allows to perform
task offloading, making sure that available
resources are used in an efficient manner.
Resources will vary between computing
devices; the task offloading mechanism
addresses this heterogeneity and results

in faster and more efficient intelligence
workloads. The distributed nature of the
storage is key for aggregating results being
generated in a distributed environment, and
that is also leveraged during the federated
learning procedures. Data is being generated
continuously (metrics, telemetry, etc.). First,
data enters the distributed storage and is held
distributed across the continuum. After that,
federated learning takes advantage of the
data distribution and the system performs a
federated learning process.

Using ICOS

The user interface - the ICOS shell - consists
of two separate frontends; a command line
interface (CLI) as well as a graphical user
interface (GUI). In its current version, the CLI
implements all functionalities supported by
the backend, while the GUI is actively being
worked on. The ICOS shell backend serves as
the entry point to the ICOS system and is the
user’s portal to interact with ICOS controllers.
It accepts authenticated requests against
its RESTful APl and forwards them to the
respective component in the intelligence
layer, meta-kernel layer or security layer.
Since the backend is stateless, all states, for
example authentication tokens, are managed
by the CLI or GUI.

Security (IAM)

CLI I ’ Meta-Kernel E
Shell Backend

GUI ; Intelligence

CLI

The ICOS CLI currently comes in several
flavors:

= linux-amd64: a version compatible with
most desktop PCs and laptops.

= linux-arm64: a version for mobile and other
lightweight devices.

= darwin-arm64: a version for M1/2/3/4
Mac(book)s.

«» darwin-amd64: a version for older (pre-M)
Mac(book)s.

We provide the newest versions on our Github
release page where they can be downloaded.
The matching binary can then be executed on
any supported machine in conjunction with a
config file that specifies at least the lighthouse
of an ICOS installation and a valid username
and password combination.

Upon first login, the list of controllers is
retrieved from the lighthouse and provided
to the user who can then select the controller
they want to use. After this selection process,
the setting is stored and used for all further
commands until it is manually removed from

the file. The CLI furthermore supports the use
of OTP tokens for multi-factor authentication.
The validity duration of an authenticated
session depends on the specific keycloak
settings and once the token expires, the user
will have to log in again.

Once the login process is complete, other
commands can be issued, for example to
create, list or delete deployments, to show

all devices connected to the system, or to
interact with Al models to have the system
predict future values of metrics. The CLI
furthermore offers a --help parameter that
provides explanations for the different options.
The available commands allow the user to:

= Log in to and out off the system.

= Create, list, delete and update deployments
together with their policies.

= Create, list and delete metrics models.
« List all resources connected to ICOS.

= List and add controllers to the lighthouse
(intended for debugging only).

GUI

The Graphical User Interface (GUI) component
of the project serves as a web-based
platform designed to provide users with

a simple and intuitive way to interact with
the system. Developed using React.js, the
interface ensures responsiveness, scalability,
and maintainability. It communicates with
the backend through RESTful APIs, enabling
seamless access to system features and
real-time data interactions. The primary goal
of this module is to enhance user experience

by making the system accessible, efficient,
and user-friendly across various devices and
platforms.

Users can easily log in to the GUI using their
credentials along with a one-time password

ICOS Ecosystem

¢>ICOS

B cluster

>

Sign In

(oT1P), ensuring both convenience and secure
access to the system.

A visual representation of the current ICOS
ecosystem is displayed as a scrollable,
zoomable graph on the index page.

Dashboard

B Node

55 Dashboard

[J Deployments
O controllers

0 Metrics

£ Settings

intel-nuc-edge
Kes-fettuccinemigter 'S:(agmg,,aspzﬂ

"“V‘abf’x’ db1 7”32'@“'4'8d'53.“m%@%“/sdcne—abzrum -bdd1-fb3500718ac9
/ ocmi2-minestrone

m2-minesrone JWSluzeotdsOevpamige

rover s
G L]

@ icos-clust®-2a

P %, master
raspberrypukassi staging-gpu-1

del @ °

flode? Yaspb-103 -

° \. staging-1-22°%S €49 gPY

°

raspbel
7

o

1COS project

https://github.com/icos-project
https://github.com/icos-project

The GUI allows users to create a deployment
by uploading a .yaml file with a predefined
structure. Existing deployments are listed
in the GUI and can be started, stopped, or
updated through the interface.

Deployment Create

Dashboard Deployment Create

Upload Deployment File

Choose File | No file chosen

All Deployments

Namespace

abc_app

abo_app

abc_app

abc_app

Job Group Name

abe_app

abe_app

abe_app

abe_app

Orchestrator

nuvla

nuvla

nuvla

nuvla

State

deployed

deployed

degraded

degraded

+ Create Deployment

Targets

nuvlabox/f675dcbe-ab27-
4291-bdd1-b3500718ac9

nuvlabox/f675dcbe-ab27-
4291-bdd1-63500718ac9

nuvlabox/f675dche-ab27-
4291-bdd1-63500718ac9

nuvlabox/f675dche-ab27-
4291-bdd1-63500718ac9

Select

Actions

Stop Delett

>
ICOS
—4

Existing deployments are listed in the GUI and
can be started, stopped, or updated through
the interface. Additionally, it is possible to add
a controller to the Lighthouse from the GUL.

Controller Create Dashboard / C

Create Controller

Controller Name
ole

= w‘

P
Enter IP* ‘
=+ Create Controller
Metric Name *
Metric Info

Enter metric description

Metric Type Model Type
Metric Type v || ModelType (g, XGB)*

Telemetry Metrics

Enter telemetry metric query

Model Tag

Model Tag (e.q., metrics_utilization_model_xgb-latest) *

S

Suiteb

P y—_

e

sse
Alirtricity

G 2

.lIil!iI U _Z .
Strereanpuing zetta D =

€

HELLENIC REPUBLIC
National and Kapodistrian
University of Athens

ENGINEERING

THE DIGITAL TRANSFORMATION COMPANY

FGC

Ferrocarrils

Y

S ° e EST. 1837 d Ié'a?;ﬁsﬁ;gﬁm
o 0""”:”6‘
e 53& 3% Technische
P a1k F—
STELENANTIS TR Unversiat
Htaestt #7355 Braunschweig

wsc:

"" xXLAaB

tukasiewicz
Centrum

()

icos-project.eu
icos_project

icos_project

1) &

@icos_project

* X %

This project has'received funding from the European Union’s HORIZON research
and innovation programme under grant agreement No 101070177.

* Kk

* 4 %

	What is ICOS?
	A MetaOS for the Continuum
	The ICOS Architecture
	The ICOS Controller
	The ICOS Agent
	Data Management

	Using ICOS
	CLI
	GUI

