
 

This document is issued within the frame and for the purpose of the ICOS project. This project has received funding from the European 

Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070177. The opinions expressed and arguments employed 
herein do not necessarily reflect the official views of the European Commission.  

The dissemination of this document reflects only the author’s view and the European Commission is not responsible for any use that may be 

made of the information it contains. This deliverable is subject to final acceptance by the European Commission. 
This document and its content are the property of the ICOS Consortium. The content of all or parts of this document can be used and 

distributed provided that the ICOS project and the document are properly referenced. 

Each ICOS Partner may use this document in conformity with the ICOS Consortium Grant Agreement provisions.  

(*) Dissemination level: (PU) Public, fully open, e.g., web (Deliverables flagged as public will be automatically published in CORDIS 

project’s page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the 
Commission Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-

S) EU SECRET under the Commission Decision No2015/444. 

 

 

. 

 

 
 

D5.2 ICOS Beta Release 
 

 

 

 

 

Document Identification 

Status Final Due Date 30/06/2024 

Version 1.0 Submission Date 28/06/2024 

Related WP WP5 Document Reference D5.2 

Related Delivera-

ble(s) 

D5.1, D2.2, D2.3, 

D2.4 

Dissemination Level (*) PU 

Lead Participant ENG Lead Author Gabriele Giammatteo 

Contributors NKUA, NCSRD, 

ATOS, BSC, TUBS, 

XLAB, SixSQ, UPC  

Reviewers Artur Jaworski (PSNC) 

Hrvoje Ratkajec (XLAB) 

Keywords: 

System Integration, CI/CD, Release, Testing, Assessment 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   2 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

Document Information 

List of Contributors 

Name Partner 

Alex Barcelo BSC 

Artur Jaworski PSNC 

Francesc Lordan BSC 

Andreas Suarez Cetruolo CeADAR 

Jaydeep Samanta CeADAR 

Gabriele Giammatteo ENG 

Maria Antonietta Di Girolamo ENG 

Kalman Meth IBM 

Andreas Oikonomakis NCSRD 

Dimitris Santorinaios NCSRD 

Nikos Dimitriou NCSRD 

Menelaos Zetas NKUA 

John White SIXSQ 

Konstantin Skaburskas SIXSQ 

Fin Gentzen TUBS 

Marc Michalke TUBS 

Jordi Garcia UPC 

Montse Farreras UPC 

Hrvoje Ratkajec XLAB 

 

Document History 

Version Date Change editors Changes 

0.1 20/05/2024 ENG ToC 

0.2 01/06/2024 NKUA, NCSRD, ENG First draft for section on testing 

Content for Integration process chapter 

0.3 12/06/2024 ENG, NKUA More contributions on section 4 

0.4 17/06/2024 ENG Final version ready for internal review 

0.5 25/06/2024 XLAB, NKUA, ENG Reviewed version 

0.6 28/06/2024 ENG, PSNC. XLAB Final version 

1.0 28/06/2024 ATOS FINAL VERSION TO BE SUBMITTED 
 

Quality Control 

Role Who (Partner short name) Approval Date 

Deliverable leader Gabriele Giammatteo (ENG) 28/06/2024 

Quality manager Carmen San Román (ATOS) 28/06/2024 

Project Coordinator Francesco D’Andria (ATOS) 28/06/2024 

 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   3 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

Table of Contents 

1 Introduction ..........................................................................................................................................8 

1.1 Purpose of the document ................................................................................................................8 

1.2 Relation to other project work........................................................................................................8 

1.3 Structure of the document ..............................................................................................................9 

2 ICOS Beta Release Notes ...................................................................................................................10 

2.1 What’s New..................................................................................................................................10 

2.2 Source Code .................................................................................................................................11 

2.3 ICOS Suites ..................................................................................................................................11 

2.4 Documentation .............................................................................................................................13 

3 Release Integration .............................................................................................................................14 

3.1 Release Integration Process and Infrastructure ............................................................................14 

3.2 Technical Documentation ............................................................................................................15 

3.3 GitHub publication .......................................................................................................................16 

4 Release Testing ...................................................................................................................................18 

4.1 Component Unit Testing and Helm Testing ................................................................................19 

4.2 Source Code Quality ....................................................................................................................23 

4.3 Container Security Vulnerability Scanning .................................................................................25 

4.4 Staging Testbed ............................................................................................................................26 

5 Release Plan........................................................................................................................................28 

6 Conclusions ........................................................................................................................................30 

7 References ..........................................................................................................................................31 

8 Annex I - Testing Goals .....................................................................................................................32 

8.1 Component Unit Testing and Helm Testing ................................................................................33 

9 Annex II - Unit Testing Methodology ................................................................................................35 

 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   4 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

List of Tables 

Table 1: ICOS Suites composition in ICOS Beta .................................................................................................. 12 
Table 2: Aggregator Component Unit Test ........................................................................................................... 19 
Table 3: Deployment Manager Component Unit Test .......................................................................................... 20 
Table 4: Intelligence Coordinator Component Unit Test...................................................................................... 20 
Table 5: Job Manager Component Unit Test ........................................................................................................ 21 
Table 6: Policy Manager Component Unit Tests .................................................................................................. 21 
Table 7: Scaphandre Helm Test Suite ................................................................................................................... 22 
Table 8: Security Layer Test Suite ........................................................................................................................ 22 
 

 
 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   5 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

List of Figures 

Figure 1: Integration Infrastructure ..................................................................................................................... 14 
Figure 2: Integration Process ............................................................................................................................... 15 
Figure 3: GitLab and SonarQube integration ...................................................................................................... 24 
Figure 4: SonarQube quality metrics.................................................................................................................... 25 
Figure 5: NCSRD Testbed .................................................................................................................................... 26 
Figure 6: Test Cases template............................................................................................................................... 36 
 

 

 

 

 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   6 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

List of Acronyms 

Abbreviation / 

acronym 

Description 

AI Artificial Intelligence 

API Application Programmatic Interface 

CI/CD Continuous Integration / Continuous Deployment 

CLI Command Line Interface 

CNI Container Networking Interface 

CVE Common Vulnerability and Exposure 

DNS Domain Name System 

Dx.y Deliverable number y belonging to WP x 

EC European Commission 

ENG Engineering S.p.A. 

GUI Graphical User Interface 

HTML HyperText Markup Language 

IaC Infrastructure As a Code 

ID Identifier 

IT-x Project’s Iteration x 

ML Machine Learning 

NCSRD National Center For Scientific Research "Demokritos" 

OCM Open Cluster Management 

OS Operating System 

TLS Transport Layer Security 

UI User Interface 

URL Uniform Resource Locator 

USB Universal Serial Bus 

UTx Unit Test x 

WPx Work Package x 

 

 

 

 

 

  



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   7 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

Executive Summary 

This document describes and accompanies the second release of the ICOS software: the ICOS Beta 

release. The release has been delivered at project’s month 22, seven months after the first release 

ICOS Alpha. The ICOS Beta release was developed and integrated following the system architecture 

and the implementation plan, and incorporating changes implemented from the feedback received 

from the first evaluation of ICOS provided by the project’s Use Cases and the first project’s review. 

This release brings several improvements in the ICOS software in terms of new functionalities, in all 

the system areas: runtime management, orchestration, security, intelligence and data management. 

The document also describes the main activities carried out and the tools used to successfully integrate 

the release. It focuses more on new processes and tools introduced for the ICOS Beta release like the 

creation of technical documentation and the publication of the source code in GitHub. 

During the integration of the ICOS Beta release a more formal, coherent, and comprehensive approach 

to software testing was introduced. A set of goals and a methodology have been defined for executing 

unit testing of the ICOS components as well as quality verification of the source code and artifacts of 

the ICOS releases. The document outlines the main type of tests executed, the tools used and a 

summary of the results. 

Finally, a plan for the next release (ICOS Final) is presented considering a) the new requirements 

elicited and prioritized for the second iteration; b) the new version of the system architecture and c) 

the feedback from the project’s Use Cases validation. 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   8 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

1 Introduction 

1.1 Purpose of the document 

This document accompanies the delivery of the ICOS Beta release. The main goal is to provide 

information on the software that composes the release. The document lays out the structure of the 

release, the functionalities delivered, how to get the source code and the software packages, how to 

deploy and use the software. 

The document also presents the process adopted and the tools used for the integration of the ICOS 

Beta release. A summary is presented for the core integration activities that were already presented in 

the previous WP5 deliverable “D5.1 - First ICOS Release: ICOS Alpha” [1]. Two activities are 

described more in detail since they have been introduced for the ICOS Beta for the first time: the 

creation of the technical documentation for the ICOS Meta OS and the publication of the source code 

in a public repository (GitHub) for the ICOS Beta release. 

The document also presents the testing process adopted in ICOS to assess the quality of the ICOS 

releases. While for the first release, an end-to-end testing workflow was provided, for the ICOS Beta a 

per-component test plan was defined and executed. It started from the definition of a set of goals for 

the testing activities that identified which aspects and properties of the software the consortium wanted 

to assess. Then, a formal methodology and process for the testing of those aspects was defined. This 

was the input for the implementation of the test cases, the selection of the testing tools, the execution 

of the tests and, finally, the collection of the results. The different phases are presented in the 

document as well as the results from the testing activities. 

Finally, the document presents a plan for the integration activities and, in particular, the release of the 

last and final ICOS release in project's month 30. The main functionalities that are expected for that 

release are listed to provide a guidance for development, integration, and testing teams and to plan the 

work in the WP5. 

The document is mainly intended to be read by technical teams both internal or external to the ICOS 

project that wants either to deploy and manage an ICOS System (to understand how the software is 

released and where to get the artifacts and the documentation) or to contribute to the ICOS software 

(to understand where to access the source code and how the integration, testing and release processes 

work). 

 

1.2 Relation to other project work  

This deliverable presents the ICOS Beta release as results of the integration work done in Work 

Package 5. ICOS Beta is the second release of the ICOS Meta OS. It is created from the evolution and 

the improvement of the first release ICOS Alpha, which is documented in deliverable D5.1. 

In addition, the ICOS software requirements and the architecture were a reference source during the 

integration activities. In particular, the deliverables “D2.3 - ICOS ecosystem: Technologies, 

requirements and state of the art (IT-2)” [2] and “D2.4 - ICOS architectural design (IT-2) [3] have 

been considered. 

Finally, this document will be updated by the deliverable “D5.3 - Third ICOS Release: Complete 

ICOS version” that will be released in project’s month 32 and will document the final ICOS release. 

 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   9 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

1.3 Structure of the document 

This document is structured in 6 major sections: 

1. “Introduction”: (this section) presents the objectives of the document and introduces its 

content, structure, and relationships with the other project’s deliverables. 

2. “ICOS Beta Release Notes”: presents the main details of the ICOS Beta release including its 

structure, a changelog, where source code, binaries and documentation can be found. 

3. “Release Integration”: reports the process, the tools and the work done for the integration of 

the release. It highlights new activities and tools introduced during the integration of ICOS 

Beta. 

4. “Release Testing”: presents the formal testing process and the tools introduced in the ICOS 

Beta release. It describes the main methodology and goals for the testing activities, the type of 

tests defined, how they have been implemented and the results. 

5. “Release Plan”: presents the plan for the integration and release of the final ICOS release. 

6. “Conclusions”: summarizes the content of the document and provides final considerations on 

how the technical work will continue in the project. 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   10 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

2 ICOS Beta Release Notes 

ICOS Beta is the second software release of the ICOS project delivered in project’s month 22 (June 

2024). This release includes several updates with regards to the first ICOS release (November 2023). 

This is also the first release for which the source code and the technical documentation are publicly 

available. 

This section briefly presents the main new functionalities of the release (section 2.1) and provides 

links for the online resources: source code (section 2.2), artifacts (section 2.3) and documentation 

(section 2.4). 

 

2.1 What’s New 

ICOS Beta delivers several improvements for all the layers of the ICOS Meta OS. 

In the Meta-Kernel layer, several new functionalities have been introduced to allow a better 

orchestration of more complex applications. The main improvements are: 

 Added support for the orchestration of multi-component applications. 

 Added support for additional orchestration requirements like minimal security level requirement, 

node hardware architecture (e.g., amd64, arm), peripheral availability. 

 Added full support for nodes orchestrated by Nuvla (supporting both Docker and Kubernetes 

runtimes). 

 Added monitoring of energy efficiency metrics produced by Scaphandre. 

 Added support for collecting, storing, and visualizing system and applications logs produced in the 

nodes. 

 Improved discovering of nodes peripherals. 

 Introduced the Policy Manager component supporting node and application performance policies 

monitoring with pre-defined application scale-up/down remediation actions. 

 

In the Security layer, additions have been done to enlarge the security assessment capabilities and 

improve the security in the ICOS Controller and Agents. In particular: 

 Added the Wazuh security vulnerabilities scanning and the SCA score for ICOS nodes. 

 Added LOMOS logs analysis. 

 Added integrated audit mechanism using Tetragon tool to monitor kernel security related events in 

the Kubernetes cluster. 

 Added encryption of communications between ICOS services using TLS encryption mechanism. 

 Implemented OAuth2 authentication in ICOS services to secure service-to-service calls. 

 

In the Intelligence layer, an improvement in the management of the models along with a deeper 

integration with the ICOS Meta-Kernel have been achieved. In particular: 

 Introduced prediction of telemetry metrics. This mechanism, integrated with the ICOS Telemetry 

database, allows for having a predictive monitoring data available in the ICOS Meta-Kernel. 

 Added drift detection for model monitoring. 

 Model explainability XAI in MLOps. 

  



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   11 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

The Data Management services have been improved releasing a new version (DataClay version 4.0) 

that includes ICOS specific features. In particular: 

 Added asynchronous support on Data Management services for more parallelism and throughput. 

 Data access proxy services available, which can be integrated with ICOS IAM and provide fine-

grain ACL. 

 More support for structured data models. 

Finally, a new web-based ICOS Shell GUI has been introduced for connecting to an ICOS Controller, 

check the available resources and the application deployed. 

 

2.2 Source Code 

The open-source code of the ICOS Beta release is publicly available in a GitHub organization at: 

https://github.com/icos-project. 

Within the GitHub organization, the code is organised in multiple repositories: 

 repositories related to the single components (e.g., Job Manager, Match Maker). In general, there is 

one repository per component, but some components are divided into multiple repositories. 

 the “ICOS Meta OS” repository that collects all components together. This repository exploits the 

git submodules concept to have a snapshot of the entire ICOS Beta release in a single repository. It 

is located at https://github.com/icos-project/ICOS-Meta-OS. 

 the “ICOS Suites” repository that contains the source code for the ICOS Suites (see section 2.3) 

that are the main artifacts used for the distribution and deployment of the ICOS Meta OS. It is 

located at https://github.com/icos-project/ICOS-Suites. 

 the “ICOS Shell” repository contains the source code for the user-level tools used to interact with 

the ICOS System. It is located at https://github.com/icos-project/ICOS-Shell. 

The public repositories only contain the released code (ICOS Beta version), while development 

version of the components and the non open-source code are managed internally in the ICOS project 

in a private GitLab instance (see section 3.1). Access to this instance can be given upon request. 

 

2.3 ICOS Suites 

The ICOS Meta OS software is distributed as three different ICOS Suites. They represent three 

different distributions to be used to deploy ICOS depending on the type of node: 

 ICOS Controller Suite: used to deploy a new ICOS Controller. It is distributed as a Helm Chart 

that includes all ICOS Controller services.  

 ICOS Agent Suite: used to deploy a new ICOS Agent. It is distributed as a Helm Chart that 

includes all ICOS Agent services. 

 ICOS Client Suite: this is the suite that contains the tools to interact with an ICOS System. It is 

intended to be installed by ICOS users. 

Table 1 provides a mapping of which services are included in each ICOS Suites for the ICOS Beta 

release. A complete and detailed description of the ICOS Suite is provided in the deliverable (D5.1, 

section 2). 

  

https://github.com/icos-project
https://github.com/icos-project/ICOS-Meta-OS
https://github.com/icos-project/ICOS-Suites
https://github.com/icos-project/ICOS-Shell


 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   12 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

Table 1: ICOS Suites composition in ICOS Beta 

Suites composition 

Component Client Controller Agent 

Shell CLI X   

Shell BackEnd  X  

Job Manager  X  

Aggregator  X  

OCM Deployment Manager   X 

Nuvla Deployment Manager   X 

DataClay  X X 

LOMOS APIs  X  

Intelligence API  X  

Telemetry Controller  X  

Dynamic Policy Manager  X  

Security Layer Coordination Module API  X  

 

There are additional components released as part of ICOS Beta that are not part of any suite and need 

to be installed separately. They are: 

 Telemetry Agent: this is a set of ICOS and third-party components that are installed on the ICOS 

nodes to collect metrics and logs. It is distributed as Helm Chart and Docker Compose. 

 ICOS Lighthouse and the ICOS Identity and Management services: they have not been 

integrated yet in any suite and need to be managed separately. 

 Third-party components: software not developed by ICOS and not listed as part of the ICOS Beta. 

However, they are requested for having a fully functional ICOS System. For instance, Open Cluster 

Management1 (OCM), Nuvla2 and Wazuh Server and Agent3. 

All the artifacts, mentioned above, released as part of the ICOS Beta release, are publicly available in 

the repository https://harbor.res.engit/icos. 

This repository contains both the Helm Charts and the Docker Images used in the deployment of the 

ICOS nodes and can be directly referenced in the installation commands. For instance, the command 

to install an ICOS Controller can be similar to: 

helm install --namespace icos-system icos-controller \ 

  oci://harbor.res.eng.it/icos/helm/icos-controller \ 

  --set global.icos.controllerId=ctrl123 \ 

  --set global.external.host=10.160.3.236 

For a guide on how to install the different artifacts of the ICOS Beta release, please refer to the online 

Administrator Guide (see section 2.4). 

 

1 https://open-cluster-management.io/ 
2 https://nuvla.io/ 
3 https://wazuh.com/ 

https://harbor.res.engit/icos
https://open-cluster-management.io/
https://nuvla.io/
https://wazuh.com/


 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   13 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

2.4 Documentation 

The technical documentation of the ICOS Meta OS can be found online at the following URL: 

https://www.icos-project.eu/docs/. 

The website hosts the four different ICOS technical guides: i) Concepts Guide, ii) Administration 

Guide, iii) User Guide and iv) Developer Guide. The details on each guide, the process and the work 

that led to the creation of this documentation are reported in detail in section 3.2. 

An additional source of documentation is the ICOS project website at https://www.icos-project.eu/. 

The website contains technical and non-technical publications, information on the project’s Use Cases 

and the project’s deliverables. 

Finally, all scientific publications supported by the ICOS project that presents the research at the basis 

of the ICOS software are collected at https://zenodo.org/communities/icosproject. 

 

 

https://www.icos-project.eu/docs/
https://www.icos-project.eu/
https://zenodo.org/communities/icosproject


 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   14 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

3 Release Integration 

The integration of the ICOS Beta release required a coordinated and collaborative effort by all 

project’s technical partners. This section briefly summarizes the work done for the integration of the 

ICOS Beta Release (section 3.1), the realization of the technical documentation (section 3.2) and the 

publication of the source code (section 3.3). The testing activities carried out during the integration of 

the release are extensively discussed in section 4. 

 

3.1 Release Integration Process and Infrastructure 

Since the beginning of the project, a well-defined and rigorous Continuous Integration and Continuous 

Deployment (CI/CD) process has been defined supported by multiple tools set-up and maintained by 

the project’s partners. This allowed to establish a continuous development, integration, release, and 

validation cycle that allows to run development activities in parallel with integration and validation 

activities, as well as reduce the time for newly developed features to be available to Use Cases for 

validation. 

The process and the tools are extensively described in deliverable D5.1. For convenience, the diagram 

of the main integration tools (Figure 1) and the integration process (Figure 2) are reported below. 

 

Figure 1: Integration Infrastructure  



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   15 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

 

Figure 2: Integration Process 

The integration of the ICOS Beta release exploited the same tools and procedures set-up for the CI/CD 

of the ICOS components. For each component under release, the automated GitLab jobs allowed to 

build the component packages, check their quality, and automatically deploy them in the staging 

environment. The source code of the ICOS Suites has been also uploaded in GitLab and followed a 

similar pipeline allowing to test their integration and the deployment in the staging environment in an 

effortless and automated way. 

 

3.2 Technical Documentation 

An important activity that accompanied the integration and the release of the ICOS software in IT-2 

was the creation of a proper technical documentation for the ICOS Meta OS. The benefits of having 

such a documentation are multiple. Internally, it constitutes a common knowledge base for all the 

people working in the project and helps in the day-by-day development, integration, and validation 

activities. Externally, it is useful for people that want to learn and use the ICOS Meta OS (e.g., the 

Open Call partners). It also greatly supports the dissemination, exploitability, and sustainability of the 

software. 

It has been decided to create four different guides for the ICOS Meta OS: 

 Concepts Guide: provides a theoretical introduction to the ICOS Meta OS introducing the 

architecture, the main functionalities, and the main components. This guide is intended for persons 

that want to be introduced to ICOS, what it is and how it works. 

 Administration Guide: provides tutorials and instructions on how to create and manage an ICOS 

System. This guide is intended for the administrators of an entire ICOS System or a part of it (e.g., 

an ICOS Agent). 

 User Guide: provides tutorials and instructions on how to use ICOS Meta OS for running user’s 

applications. This guide is intended for application developers and integrators that want to use ICOS 

for orchestrating their applications.  



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   16 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

 Developer Guide: provides tutorials and instructions on how to use and configure single ICOS 

components and how to programmatically integrate and/or extend them. It includes a reference for 

all commands and APIs exposed by ICOS. This guide is intended for expert technical persons who 

want to learn how ICOS works internally or want to develop integrations or extensions for ICOS 

components. 

The creation of content for the four guides was carried out in WP5 with a structured and collaborative 

effort. After the table of content was agreed, an editor and a reviewer were appointed for each section. 

The status and the progresses were discussed weekly in WP5 calls. Content for the “Concepts Guide” 

section has been largely adapted from already existing content published in ICOS deliverables and 

papers. In addition, some sections (e.g., API references) of the “Developer Guide” have been auto 

generated with specific tools (e.g., Swagger4). This was a convenient way to have an updated and 

accurate documentation with a little effort. 

Concerning the format of the guides, it has been decided to create them as an HTML Website instead 

of Word or PDF documents. The benefits are multiple: 

 easier distribution and access: the guides are hosted along with the ICOS Website at 

https://www.icos-project.eu/ and are easily and publicly accessible over Internet. 

 easier maintenance and update: the content can be updated without the need of downloading new 

versions of the document. 

 easier interaction with the content: hyperlinks, collapsible sections and video/animation offer an 

easier and richer reading experience. 

Another benefits of using HTML pages for the documentation is the automation. The guides are 

written as Markdown documents and stored in a shared Git repository. At every change pushed to 

the documentation repository, an automated job generates the HTML website (using MkDocs5) that is 

uploaded on the hosting server.  This automation minimizes the effort for creating and publishing the 

guides and allow editors to focus more on the content (the Markdown files) while the formatting and 

the styling is automatically applied during the automatic generation of pages in a consistent way 

across all the guides. It also makes updating and distributing the documentation effortless. 

 

3.3 GitHub publication 

The ICOS source code is hosted in a private GitLab instance set-up and maintained by the ICOS 

consortium. This decision has been taken at the beginning of the project to be able to share and 

collaborate on source code within the consortium, but, at the same time, avoid making source code 

with an undecided license and not enough maturity public. 

However, it has been decided to upload the open-source code of the ICOS Beta release in a public 

repository. The decision was taken considering that the source code of this release is mature, tested 

and documented enough to be published. Multiple benefits can be obtained from the publication of the 

source code, such as: 

 easier collaboration with developers external to the ICOS consortium (e.g., Open Call partners, 

other EU research projects’ developers). 

 make the code findable and analysable by the open-source community increasing the awareness 

and the trust for the ICOS Meta OS. 

 start to build a community of people around the ICOS Meta OS that can test, use and extend ICOS 

leading to the creation of an ecosystem of tools and applications based on ICOS. 

 support the exploitation strategy of the ICOS components. 

 

4 https://swagger.io/ 
5 https://squidfunk.github.io/mkdocs-material/ 

https://www.icos-project.eu/


 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   17 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

As a repository to host the code, GitHub6 was selected as being the biggest and most popular 

developers’ community. The code for ICOS is hosted in a GitHub organization named “ICOS Project” 

at the URL: https://github.com/icos-project. 

The publication procedure followed two main phases: 

1. selection and preparation of the source code. 

2. adaptation and upload in GitHub. 

For the first phase, an internal checklist has been created and shared with the developers in ICOS to 

determine whether a given repository was eligible to being published or not: 

 the source code is correctly licensed under an open-source license and follows the rules of that 

license (e.g., source code files start with a header with a reference to the license); 

 presence of README and LICENSE files. 

 the README file reports the essential information to understand what the code is about, its 

structure, how to build and how to use it. 

 software quality and security scanning have been performed on the source code and reported no 

major issues. This should be verified by the execution of SonarQube7 scanning configured as part of 

the building pipeline for each component. 

 the source code is accompanied by a proper documentation that can be located, depending on the 

component, in the README file, in a dedicated folder (e.g., “docs/”) and/or in the source code 

files. 

 for components that expose a REST API, the repository should contain a schema file following the 

OpenAPI specification8. 

 the source code is accompanied by automated Unit Tests. At this stage, a coverage threshold is not 

set, but it might be set for the next release. 

 a Git tag corresponding to released version of the component and corresponding release notes 

should be available. 

The second phase consisted in uploading all eligible repositories in GitHub. Unlike internally used 

GitLab9 where the code is grouped in multiple groups and subgroups, GitHub does not have the 

concept of grouping, so multiple code repositories have been merged in few top-level GitHub 

repositories using the concept of git submodules10. The following repositories have been created in 

GitHub: 

 ICOS-Meta-OS (https://github.com/icos-project/ICOS-Meta-OS): to group all the source code of the 

ICOS System in a single codebase. 

 Shell (https://github.com/icos-project/Shell): to host the source code for the ICOS Shell tools. 

 Suites (https://github.com/icos-project/Suites): to host the source code for the ICOS Suites used to 

deploy ICOS. 

 Documentation (https://github.com/icos-project/Documentation): to host the documentation for the 

ICOS software (see section 3.2). 

First, each source code repository in GitLab has been uploaded in GitHub. Then the grouping 

hierarchy has been recreated in the top-level repositories (listed above) using folders and submodules. 

This was done with a semi-automated procedure to be able to easily replicate it for multiple 

repositories and for the next releases. 

 

6 https://github.com/ 
7 https://www.sonarsource.com/products/sonarqube/ 
8 https://swagger.io/specification/ 
9 https://production.eng.it/gitlab 
10 https://www.git-scm.com/book/en/v2/Git-Tools-Submodules 

https://github.com/icos-project
https://github.com/icos-project/ICOS-Meta-OS
https://github.com/icos-project/Shell
https://github.com/icos-project/Suites
https://github.com/icos-project/Documentation


 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   18 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

4 Release Testing 

The goal of this section is to provide a detailed overview of the testing strategies and methodologies 

employed in the ICOS project. By delving into the testing goals, methodologies, and specific test 

suites implemented, it aims to elucidate how each component of the ICOS software system is 

rigorously validated to ensure its robustness, reliability, and efficiency. This section outlines the 

comprehensive testing framework currently in place, setting the stage for the future expansion of 

testing efforts in subsequent deliverable. 

To date, a comprehensive Unit Test methodology has been meticulously established to validate the 

functionality and reliability of individual components within the ICOS software ecosystem. This 

foundational framework ensures that each unit, from the smallest function to larger modules, operates 

correctly in isolation, minimizing dependencies and enabling precise detection of issues early in the 

development cycle. By rigorously applying this methodology, high standards of accuracy, reliability, 

and maintainability are upheld across all ICOS applications. 

The next crucial step involves expanding the testing efforts to encompass additional components, 

thereby enhancing the breadth and depth of the Unit Tests. This extension will ensure that every part 

of the system is thoroughly vetted, reinforcing the commitment to delivering robust and high-quality 

software solutions. Moreover, comprehensive end-to-end tests, including integration tests, will be 

integrated to validate the seamless execution and interaction of all ICOS components within the full 

deployment environment. These tests are vital for confirming that the entire ICOS shell and its 

components function cohesively, meeting all operational and performance expectations in real-world 

scenarios. 

The structure of this section is organized into several subsections, each focusing on a specific aspect of 

the testing approach: 

1. Component Unit Testing and Helm Testing: This section provides an overview of the 

comprehensive testing framework implemented in the ICOS project. By detailing specific test 

suites and execution results, it demonstrates how each component of the ICOS software 

system is validated to ensure robustness, reliability, and efficiency. each test suite, covering 

components like the Aggregator, Deployment Manager, Intelligence Layer, Job Manager, 

Policy Manager, Scaphandre11 and Security Layer. 

2. Source Code Quality: This part discusses the importance of code quality and the 

methodologies employed to measure and ensure it throughout the development cycle. Tools 

like SonarQube12 are highlighted for their role in assessing multiple non-functional properties 

of the source code. 

3. Container Security Vulnerability Scanning: This section focuses on the methodologies and 

results of scanning Docker images for security vulnerabilities, ensuring the reliability and 

trustworthiness of the software. 

4. Staging Testbed: Finally, this subsection provides an overview of the enhanced infrastructure 

environment, detailing hardware updates, Kubernetes cluster configurations, and the transition 

to more efficient and scalable solutions. 

 

Additional details on testing are provided in the annexes at the end of the document: 

1. Annex I - Testing Goals: (at Annex) This subsection outlines the various types of tests 

conducted to cover critical areas of the application lifecycle, including component 

 

11 https://github.com/hubblo-org/scaphandre 
12 https://www.sonarsource.com/products/sonarqube/ 

https://github.com/hubblo-org/scaphandre
https://www.sonarsource.com/products/sonarqube/


 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   19 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

connectivity, functionality verification, configuration accuracy, integration readiness, and 

operational behaviour. 

2. Annex II - Unit Testing Methodology: This part delves into the systematic approach taken 

for unit testing, detailing the key elements such as test case ID, test description, preconditions, 

test steps, expected results, actual results, and status. This methodology ensures that each unit 

of the application is tested in isolation to confirm its intended performance. 

By structuring the section in this manner, the aim is to provide a comprehensive and coherent narrative 

of the testing strategies and methodologies employed in the ICOS project, highlighting the 

commitment to delivering high-quality and reliable software solutions. 

4.1 Component Unit Testing and Helm Testing 

Methodology and Goals 

Component unit testing and Helm testing are integral to ensuring that each piece of the ICOS software 

performs as expected both independently and within the Kubernetes environment. This section will 

discuss the execution and results of these tests, focusing on their impact on software quality and 

operational reliability. 

1. Component Unit Testing: Each component within ICOS is tested to validate its functionality and 

interaction within the system. Tests for components like the Aggregator, Deployment Manager, 

and Intelligence Layer ensure that each unit performs its role effectively, facilitating seamless 

system operations. 

2. Helm Tests: Helm tests validate the integration and functionality of Kubernetes resources 

managed through Helm charts. These tests ensure that configurations are applied correctly and that 

components function cohesively within the deployment environment. Key results from these tests, 

demonstrate successful deployments and operational functionality. 

Implementation 

1. Aggregator: The component tests for the Aggregator application are designed to verify its 

deployment on the Kubernetes testbed and ensure it successfully retrieves all required metrics 

from Thanos. These metrics pertain to the OCM and Nuvla clusters and nodes. The tests include: 

Table 2: Aggregator Component Unit Test 

Definition of the Unit 

Tests 

Verify the Aggregator application component deployed on 

Kubernetes testbed to check it gets all the required metrics from 

Thanos13. These metrics are related to the OCM and Nuvla clusters 

and nodes. 

Definition of the 

Interfaces to be tested 

Kubernetes API to check the correct deployment of the application, 

and Aggregator API for metrics reporting. 

Unit Test Cases 

descriptions 

UT1: Aggregator is correctly deployed on the Kubernetes testbed. 

UT2: Thanos metrics are correctly collected and formatted by the 

Aggregator. 

 

13 https://thanos.io/ 

https://thanos.io/


 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   20 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

2. Deployment Manager: The component tests for the Deployment Manager are designed to ensure 

it can pull all executable jobs and execute them to successfully create a deployment. The tests 

include: 

Table 3: Deployment Manager Component Unit Test 

Definition of the Unit 

Tests 

Make sure the Deployment Manager can pull all executable jobs and 

execute them to successfully create a deployment. 

Definition of the 

Interfaces to be tested 

Deployment Manager API. 

Unit Test Cases 

descriptions 

UT1: Successful Job Deployment on Deployment Manager. 

 

3. Intelligence Layer: The component tests for the Intelligence Layer are crafted to validate the 

successful deployment of the associated API, its interaction with various ICOS components, and 

the availability of the features it offers. These tests are summarized as follows: 

Table 4: Intelligence Coordinator Component Unit Test 

Definition of the Unit 

Tests 

Verify the deployment of the Intelligence co-ordination API and 

ensure if all its components are working as expected. 

Definition of the 

Interfaces to be tested 

Intelligence co-ordination API, model training and prediction API, 

Lomos14 API, Mlflow15 UI for tracking models, Jupyter16 Hub and 

Jupyter Lab instances for running Jupyter notebooks 

Unit Test Cases 

descriptions 

UT1: Successfully launching and running the Docker instance for the 

intelligence co-ordination API.  

UT2: Access the Intelligence layer co-ordination UI on any browser. 

UT3: Perform model training with the specified dataset and model 

training parameters. 

UT4: Offload model training workload to DataClay. 

UT5: Perform model inference with the specified trained model to 

generate predictions. 

UT6: Access the MLFlow Tracking UI to visualise and manage 

multiple trained models. 

UT7: Start Jupyter notebook sessions for performing ML operations 

utilising the Docker environment. 

UT8: Get anomalies from the Lomos API service. 

 

 

 

14 https://xlab.si/solutions/artificial-intelligence-and-machine-learning/  
15 https://mlflow.org/ 
16 https://jupyter.org/ 

https://xlab.si/solutions/artificial-intelligence-and-machine-learning/
https://mlflow.org/
https://jupyter.org/


 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   21 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

4. Job Manager: The component tests for the Job Manager are designed to verify its deployment on 

the Kubernetes Management cluster and ensure it can create an application deployment from the 

application description file, allocate resources via the Matchmaking service, and prepare the 

application for execution. The tests include: 

Table 5: Job Manager Component Unit Test 

Definition of the Unit 

Tests 

Verify the deployment of Job Manager Helm chart on Kubernetes 

Management cluster and ensure its able to create an application 

deployment from the application description file and prepare it for 

execution. 

Definition of the 

Interfaces to be tested 

Helm Chart parameters, Job Manager API for deployment, 

Matchmaking API for allocation of the deployment. 

Unit Test Cases 

descriptions 

UT1: Successful deployment of Job Manager on a Kubernetes 

management cluster. 

UT2: Successful creation of an application deployment (in form of 

jobs) from application description file. 

UT3: Request target node for each application's component to 

Matchmaking service. 

UT4: Application deployment becomes executable (all components 

are ready to be executed). 

 

5. Policy Manager: The component tests for the Policy Manager are designed to ensure its 

successful deployment, verify the proper functioning of all its features, and confirm that the UI is 

accessible via a web browser. These tests include: 

Table 6: Policy Manager Component Unit Tests 

Definition of the Unit 

Tests 

Verify the deployment of the Policy Manager, ensure all things 

working as well and UI can be accessed by the browser. 

Definition of the 

Interfaces to be tested 
Policy Manager UI 

Unit Test Cases 

descriptions 

UT1: Successfully launching and running the helm instance for the 

Policy Manager.  

UT2: Run python unit tests. 

UT3: Access the Policy Manager UI. 

UT4: List of all Policies created is showed from the Policy Manager 

UI. 

UT5: History of the policy selected is showed from the Policy 

Manager UI. 

 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   22 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

6. Scaphandre: Helm tests for the Scaphandre component are specifically designed to verify its 

power consumption metrics collection capabilities within a Kubernetes environment. The tests 

summarized below: 

Table 7: Scaphandre Helm Test Suite 

Definition of the Unit 

Tests 

Verify the deployment of Scaphandre Helm chart on Kubernetes 

nodes and ensure it monitors energy consumption accurately. 

Definition of the 

Interfaces to be tested 

Helm chart parameters, Kubernetes API for deployment, Scaphandre 

APIs for energy data reporting. 

Unit Test Cases 

descriptions 

UT1: Successful deployment of Scaphandre on a Kubernetes node 

(test health of pod and response status code of a simple GET 

operation to Scaphandre to be 200). 

UT2: Attempted deployment of Scaphandre on an ARM Kubernetes 

node (Expect failure as Scaphandre in not compatible with ARM 

architecture). 

UT3: Energy consumption data collection from a node running 

Scaphandre (validate that the response from calling Scaphandre 

service contains specific eco efficiency metrics). 

 

7. Security Layer: The component tests for the Security Layer aim to ensure the successful 

deployment of the component, verify access to the Security Layer Coordination API, and confirm 

that its primary functionalities are operating as intended. These tests are outlined as follows: 

 

Table 8: Security Layer Test Suite 

Definition of the Unit 

Tests 

Verify the deployment of the Security Layer Coordination API and 

ensure all its components are working as expected and the UI can be 

accessed by the browser. 

Definition of the 

Interfaces to be tested 
Security Layer Coordination API 

Unit Test Cases 

descriptions 

UT1: Successfully launching and running the helm instance for the 

Security Layer Coordination API 

UT2: Access the Security Layer Coordination API 

UT3: List all Security Scan agents in the ICOS topology 

UT4: Run Security Scan for vulnerabilities 

UT5: Get Security Scan results for vulnerabilities in the Telemetry 

metrics format 

 

 

 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   23 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

Execution and Results 

Component tests of all components, including the Intelligence Layer, Security Layer, Policy Manager, 

and more, has consistently demonstrated successful deployments and functionality within the CI/CD 

pipeline and on the testbed. Each component has been verified to perform its intended functions 

smoothly, with no disruptions during deployment or updates. This ensures that all systems operate 

reliably, maintaining expected performance and stability throughout various deployment scenarios. 

Helm tests for the component mentioned are also executed as part of the CI/CD pipeline whenever 

changes are pushed to the repository. Also, these tests are run for each component when it is deployed 

to a node. These tests can also be manually triggered pre-installation, post-upgrade, and before the 

release is fully integrated into the production environment. This ensures that any deployments or 

updates meet the expected criteria before they affect the production systems. 

The aggregated results of the Helm tests have consistently demonstrated successful deployments and 

functionality within the Kubernetes environment of nodes. The tests have verified that components 

deployments and functionalities are working as expected. Additionally, these tests have ensured that 

configuration updates (changing memory or disk limitations) are applied seamlessly and without 

disruption to ongoing processes. 

 

4.2 Source Code Quality 

Methodology and Goals 

Most of the software developed in ICOS will be released as open-source project and will be published 

in a public repository (see section 3.3). An important property of the source code to be ensured before 

making it public is its quality. Code quality is a property that is the sum of multiple different non-

functional properties of source code like: 

 readability: how easy it is to read and understand the code; 

 maintainability: how easy it is to change and evolve the code; 

 reusability: how easy it is to adapt the code to use it in a different context; 

 reliability: can the code work without failures; 

 testability: how easy it is to test the code; 

 security: is the code immune to known security vulnerabilities (e.g., does not use vulnerable 

libraries/functions); 

 documentation: how well is the code documented with code comments, docstrings and/or other 

types of documentations; 

 portability: how portable is the code (i.e., can be compiled for different hardware architectures). 

In the case of ICOS, having a code with a good quality is critical for the adoption and evolution of the 

system by external actors (exploitation) and for the sustainability of the system after the end of the 

ICOS project. 

It has been decided to measure the quality of the code of the software developed in the ICOS project in 

a consistent and reliable way during the entire development cycle and not just at the end. This allows 

for faster feedback to developers that can take the quality of their code under control since the 

beginning of the development. 

In additional, a check on the quality of the code is done before publishing the code, ensuring that only 

source code that passes the quality check can be published. 

 

 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   24 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

Implementation 

The main tool used to measure the quality of source code used in ICOS is SonarQube. The main 

reasons that led to the selection of this tool are that: a) it includes measurement of several aspects of 

code quality in a single tool (while many other tools only measure one aspect), b) has customizable 

thresholds, c) can integrate new analysis, programming languages and tools through plugins, d) it 

easily integrates with CI/CD tools, and d) it is an open-source project. 

An instance of SonarQube has been deployed and it is maintained for the ICOS project by Engineering 

S.p.A. (ENG). In GitLab, for each repository that contains source code, an automated job has been 

created that execute the analysis of the source code and uploads the results to SonarQube. This job is 

triggered and run for each commit in the repository. As depicted in the screenshots in Figure 3, the job 

fails in case that the quality threshold is not satisfied. The jobs also print useful information to debug 

the quality of the source code. The threshold is configured and can be customized directly in the 

SonarQube portal. 

 

Figure 3: GitLab and SonarQube integration 

In addition to SonarQube analysis, additional jobs have been added in GitLab to check the quality of 

the code: 

 secrets detection: scans the files in the code repositories looking for strings that resemble 

passwords, secrets and private keys. This is a very effective check to enforce the good practice of 

not sharing secrets in code repositories; 

 Dockerfile and Helm linting: analyses the Dockerfile and the Helm’s files to find errors or bad 

practices. 

Execution and Results 

All analysis executed in the GitLab jobs are uploaded in SonarQube and can be accessed through its 

web portal. The portal keeps the current status of the quality of code for each component as well as the 

historical trends and make it is easy to aggregate results across all projects as well as navigate and 

review the issues for single projects. 

SonarQube aggregates and compute multiple quality metrics. Figure 4 shows the quality indicators for 

all the analysed ICOS code repositories collected on the 28th of June 2024. 

https://sonarqube.res.eng.it/
https://sonarqube.res.eng.it/
https://sonarqube.res.eng.it/


 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   25 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

 

Figure 4: SonarQube quality metrics 

The main conclusions on these results and guidelines for the upcoming activities are that: 

 the ICOS source code has a very good Reliability and Maintainability (all analysed components 

score “A”); 

 some components have security suggestions to address (potential security issues that needs to be 

assessed manually); 

 the coverage of unit tests needs to be improved (however, not all the unit tests are counted by 

SonarQube). 

4.3 Container Security Vulnerability Scanning 

Methodology and Goals 

The main distribution format for ICOS software is Docker Images. Each ICOS component is packaged 

into a Docker Image that is built during the CI/CD pipeline. It is extremely important to assess the 

quality and the security of the generated Docker Images to make sure that the software delivered is 

trustable and reliable. 

Implementation 

There exist multiple tools that can scan Docker Images. In ICOS, Trivy17 was selected for its 

capabilities and ease of integration in the existing GitLab CI/CD pipeline. Trivy is able to identify 

issues in Docker Images related to i) OS packages and software dependencies; ii) known Common 

Vulnerabilities and Exposures (CVEs); iii) Infrastructure as a Code (IaC) issues and 

misconfigurations; iv) sensitive information and secrets and v) software licenses. 

 

17 https://aquasecurity.github.io/trivy/ 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   26 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

Execution and Results 

Trivy is integrated as an automated job in the GitLab CI/CD pipelines for all source code repositories 

that generates a Docker Image. The job executes the Trivy scan of the newly generated Docker Images 

and reports the issues found in the logs. 

At the moment of writing, while the scans are executed systematically for all the ICOS Docker 

Images, the results are only printed in the execution logs, so no aggregated data is available. This 

aspect will be improved in the remaining part of the project by exporting the results as metrics that can 

be easily analysed and aggregated (e.g., “total number of high priority vulnerabilities found”). 

4.4 Staging Testbed 

The infrastructure environment provided by National Center For Scientific Research "Demokritos" 

(NCSRD) has been enhanced with several updates to improve its computing and networking 

capabilities. Firstly, on the hardware level, two additional servers have been integrated into the 

infrastructure, expanding the capacity and potential for virtualization. The Proxmox18 cluster now 

consists of five dedicated physical servers as depicted in Figure 5, further improving performance. 

 

 

Figure 5: NCSRD Testbed 

 

18 https://www.proxmox.com/en/ 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   27 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

Regarding the Raspberry Pi devices, the previous setup using Minikube19 has been deprecated. Both 

Raspberry Pi 4 devices now run K3s, a lightweight Kubernetes distribution, and are configured with 

the Cilium Container Network Interface (CNI). The transition from Minikube to K3s was motivated 

by the need for a more efficient and scalable solution. K3s is particularly well-suited for lightweight 

and resource-constrained environments like the Raspberry Pi, offering better performance and easier 

management compared to Minikube. This transition makes the infrastructure more efficient and easier 

to maintain. 

To enhance connectivity between different nodes, ClusterLink20 has been leveraged. This tool 

interconnects pods running on the Intel edge device with those running on the Raspberry Pi devices, 

ensuring seamless communication and data exchange across the entire infrastructure. Additionally, a 

USB camera has been attached to the Intel node. It is used to exploit and validate the peripherals 

discovery and match making capabilities of ICOS. More cluster interconnections will be supported 

according to the needs that arise. 

Furthermore, a new Kubernetes cluster identical in configuration to the existing one has been 

established. This additional cluster serves as a staging environment, allowing for testing and 

development without impacting the stability of the first environment. The original Kubernetes cluster 

now functions as the stable environment. 

 

19 https://minikube.sigs.k8s.io/ 
20 https://clusterlink.net/docs/v0.2/ 

https://minikube.sigs.k8s.io/
https://clusterlink.net/docs/v0.2/


 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   28 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

5 Release Plan 

The ICOS Beta software release is the intermediate release of the ICOS Meta OS. The last and final 

release for ICOS software will be delivered in project’s month 32 (March 2025). 

In line with the continuous development strategy of the project, the integration of final release will be 

done in an incremental way starting soon after the release of ICOS Beta, exploiting the automated 

CI/CD process in WP5. In addition, depending on the short-term plans in WP3 and WP4, internal 

releases could be scheduled before the final release to deliver updated software/functionalities to the 

project’s Use Cases and to the open call projects. 

This section provides an initial plan for the functionalities that will be included in the ICOS Final 

release, accordingly to: a) the current status of the project; b) the plans provided in deliverable D2.3. 

The main functionalities expected to be included in the ICOS Final release are: 

 Continuum Management: The creation and the management of the Cloud-Edge continuum will be 

improved making it easier to on-board new infrastructure/devices into an ICOS Continuum. The 

management of the resources will be made more effective, efficient, and distributed. 

- On-Boarding: procedures for the On-boarding and management of the devices will be eased and 

partially automated. This will allow a faster, reliable, and more interoperable management of the 

continuum. 

- Multi-controller communication. In the final release, a variable number of ICOS Controllers 

will be deployed as part of an ICOS infrastructure and will coordinate through cross-

communication protocols to deliver collaborative management. 

- Networking. Full network connectivity across ICOS sites thanks to the integration of Cluster-

Link. ClusterLink simplifies the connection between application services that are located in dif-

ferent domains, networks, and cloud infrastructures. ClusterLink is useful when multiple parties 

are collaborating across administrative boundaries. With ClusterLink, information sharing poli-

cies can be defined, customized, and programmatically accessed around the world by the right 

people for maximum productivity while optimizing network performance and security. 

 Runtime Management: The definition and the execution of user’s applications will be improved 

adding more advanced orchestration capabilities and control on the application behaviour: 

- Application Descriptor: Definition of the syntax for describing the application topology and or-

chestration requirements will be completed offering more flexibility and expressivity. 

- Intelligent application deployment. The matchmaking process will be AI-driven in order to 

provide optimal deployment strategies. More open and flexible solutions will be considered to 

leverage the capabilities of the whole continuum and estimating the effects of local and remote 

data sources access. The intelligent technology will be fed with historical and run-time telemetry 

and monitoring data. 

- Enhanced dynamic adaptation loop. For the final release of ICOS, the dynamic adaptation loop 

will be improved in two directions. First, it will publish new metrics in the monitoring infrastruc-

ture (i.e., security and green efficiency related) to allow a better understanding of the service be-

haviour and its current status/needs. Second, it will leverage on AI to make decisions on the cur-

rent resource allocation and propose possible adaptations. 

 Data Management: For the final release, it will include the necessary features required for 

managing data across the continuum. The task offloading mechanism will allow the Intelligence 

Layer to perform training with high data locality without having to deal with the specific topology 

of ICOS nodes nor data persistency. The Data Management service on the ICOS agents will give a 

direct access to agent data, allowing other components to interact and react in a decentralized 

manner with lower latency and lower bandwidth requirements. The expertise of the Data 

Management partners will also be leveraged in the Use Cases and result in transparent continuum-



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   29 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

aware architectures that will manage data without relying solely on the cloud or on fully centralized 

solutions. 

 Intelligence Layer: For the final release, the intelligence layer will incorporate a full AI 

trustworthiness module featuring model re-training based on model degradation, explainable AI, 

and federated learning. It will further enhance the meta-kernel models, support to Use Cases and 

will count with an online AI model repository (formerly called AI Marketplace, or AI models 

catalogue). 

 Security: The Security Layer functionalities planned for the final release, enhance the existing 

scanning functionality to include the execution of mitigation or recovery actions for detected 

anomalies, security vulnerabilities and threats as well as enhance the basic management of security 

compliance policies with the ability to execute remediation actions for compliance policy violations. 

The ICOS’s zero-trust approach will be completed adding authentication, authorization and 

encryption not only for external communications, but also for intra-node, service-to-service calls.  

 Shell: The ICOS Shell will be completed, adding more functionalities to the Graphical User 

Interface (GUI) like visualization of real-time performance metrics and alerts. 

The plan presented in this section will provide a guidance to both technical Work Packages for the 

implementation and to WP5 for planning the integration and the testing of the ICOS Final release. 

However, being still in a very active phase of the project, some requirements could change or be re-

prioritized, leading to a change to this plan too. 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   30 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

6 Conclusions 

This document accompanies the delivery of the ICOS Beta release, the second software release for the 

ICOS project.  

With regards to the previous release (ICOS Alpha, November 2023), several improvements in all the 

ICOS layers have been delivered (section 2) of this document, provides a summary of all the released 

functionalities as well as pointers to online resources for this release. 

In addition, two important activities have been introduced during the integration of the ICOS Beta 

release that improves the impact, the exploitability and the future sustainability of the ICOS Meta OS: 

 the source code of the software developed in ICOS as part of the ICOS Meta OS has been published 

as open-source code at https://github.com/icos-project; 

 the technical documentation to administer and use an ICOS System has been created and made 

available online at https://www.icos-project.eu/docs/; 

Both activities are the results of an extensive collaborative effort among the project’s partners. The 

main procedures and guidelines followed as well as the results are reported in the document (sections 

3.2 and 3.3). 

The document reports (section 4) the effort towards the introduction of a formal and comprehensive 

software testing process in the project. The document outlines the goals and the methodology for the 

testing process introduced and describes the current type of tests that are executed. To date, a 

comprehensive Unit Test methodology has been meticulously established to validate the functionality 

and reliability of individual components within the ICOS software ecosystem. By rigorously applying 

this methodology, high standards of accuracy, reliability, and maintainability are upheld across all 

ICOS applications. In addition, a set of automated checks and validation of ICOS source code and 

artifacts are executed during the CI/CD pipelines: a) SonarQube source code analysis, b) Container 

Vulnerability Scanning, c) Secret Detection, and d) Docker and Helm linting checks. The next crucial 

step involves expanding the testing efforts to encompass additional components, thereby enhancing 

the breadth and depth of the Unit Tests. 

Finally, the document includes (in section 5) an initial release plan for the final ICOS release (ICOS 

Final) that will be delivered at the end of the project. The plan describes the main functionalities that 

are expected to be added/improved to the ICOS Meta OS by the end of the project. The plan might 

change during the project, due to the feedback received by the Use Cases and/or open call projects. 

However, it is intended to provide an initial guideline to the technical Work Packages to organize the 

activities in the remaining part of the project. The final ICOS software release will be documented in 

deliverable “D5.3 - Third ICOS Release: Complete ICOS version” that will be delivered in project’s 

month 32. 

https://github.com/icos-project
https://www.icos-project.eu/docs/


 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   31 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

7 References 

 

[1]  ICOS. D5.1 -ICOS Alpha Release, M. Michalke, 2023. https://www.icos-project.eu/deliverables   

[2]  ICOS. D2.3 - ICOS ecosystem: Technologies, requirements and state of the art (IT-2), G. Xylouris, 

2024. https://www.icos-project.eu/deliverables 

[3]  ICOS. D2.4 - ICOS architectural design (IT-2), J. Garcia, 2024.  

 

 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   32 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

8 Annex I - Testing Goals 

In the development and deployment of complex software systems, particularly those deployed on 

Kubernetes, testing encompasses various aspects to ensure robust, reliable, and efficient operation of 

developed components. The types of tests conducted are strategically chosen to cover multiple critical 

areas of the application lifecycle: 

Component Connectivity: Testing connectivity ensures that each component can successfully 

communicate with others according to the defined network policies and service configurations. This is 

crucial in distributed systems where components often operate in different pods or even across 

clusters. Connectivity tests validate network configuration, DNS resolution, and service discovery 

mechanisms, ensuring that components can reach each other and function cohesively. 

Functionality Verification: This involves detailed testing of each function within the components to 

ensure they perform as expected under various scenarios. Functionality tests include both positive and 

negative scenarios to validate the handling of correct inputs as well as error conditions. These tests 

help in identifying any functional shortcomings or deviations from the expected behaviour, which is 

critical for ensuring that the software meets its specifications. 

Configuration Accuracy: Configuration tests verify that the settings applied to each component are 

correct and effective. This includes environmental variables, configuration files, and runtime 

parameters. Accurate configuration testing is essential to ensure that the application operates under 

right conditions, and misconfiguration, which are a common source of failure in software systems, are 

identified and corrected. 

Integration Readiness: Before individual components are combined into a larger system, it is vital to 

test their readiness for integration. This type of testing checks if components can work together 

without issues and that interfaces between them are correctly defined and implemented. Integration 

readiness tests are a precursor to full integration tests and help in isolating issues that can affect the 

interactions between components. 

Operational Behaviour: Operational tests assess the system’s behaviour under normal and peak load 

conditions to ensure it can handle real-world use. This includes performance testing, stress testing, and 

resilience testing under varied conditions, such as high traffic or data load, network latency simulation, 

and more. Testing operational behaviour is crucial for understanding how the system behaves in 

production, ensuring that it remains stable and performs efficiently even when pushed to its limits. 

By covering these critical aspects through targeted testing strategies, the project aims to minimize the 

risk of failures, ensure high quality of service, and guarantee that the system can meet the required 

operational standards post-deployment. Each testing phase builds on the previous, from ensuring 

individual component functionality to verifying that the whole system can operate cohesively and 

handle expected loads, thus paving the way for a successful integration and deployment in a 

production environment. 

To further enhance the robustness and reliability of ICOS software systems across various deployment 

environments —development, staging, and production— testing strategy is meticulously designed to 

be automated and thorough. This strategic automation is essential not only for maintaining high 

development velocity but also for ensuring that each deployment adheres to stringent quality and 

performance criteria. 

Automation and Continuous Integration/Continuous Deployment (CI/CD): An advanced CI/CD 

pipeline using GitLab is integrated, which plays a crucial role in the testing automation strategy. This 

setup allows for the automatic execution of tests every time changes are committed to the codebase. 

Automating tests in development, staging, and production environments ensures that any version of 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   33 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

the software being prepared for release is tested under conditions that closely mimic the real-world 

scenarios in which it will operate. 

Helm Tests for Kubernetes Deployments: In addition to the CI/CD pipeline, Helm tests are utilized. 

These tests are specifically designed for Kubernetes deployments, enabling the validation of 

configurations and functionalities in a manner that is native to Kubernetes's orchestration environment. 

Helm tests are instrumental in confirming that services are deployed correctly with all dependencies 

and configurations in place as expected. 

Component-Specific Custom Tests: Each component within the system is equipped with its own set 

of custom tests. These are developed to address the unique requirements and functionalities of 

individual components, providing a deep, focused examination of critical features and operational 

behaviour. These tests are vital for verifying that all parts of the system work harmoniously and meet 

predefined functional benchmarks. 

Ensuring Deployment Criteria: The combination of GitLab CI/CD, Helm tests, and component-

specific tests ensures that every deployment is rigorously vetted before it is released into production. 

This approach not only streamlines the identification and rectification of potential issues before they 

affect users but also helps maintain consistent compliance with our operational standards and security 

policies. 

8.1 Component Unit Testing and Helm Testing 

Component Unit Testing is a fundamental part of ICOS software development lifecycle aimed at 

validating individual parts of the application in isolation from the wider system. This method involves 

testing each component at the smallest testable part of the application, such as functions, methods, 

classes, interfaces, and modules. Focusing on the smallest unit of code ensures that each element 

performs as expected before it interacts with other parts of the system. 

The main goals are: 

1. Accuracy and Reliability: The primary goal of component unit testing is to verify that each 

component behaves correctly under various scenarios, including both expected use and edge 

cases. This helps to ensure the software's reliability by catching bugs and issues at the earliest 

possible stage. 

2. Facilitate Changes: Component unit testing makes the codebase safer to refactor or upgrade, 

as changes can be validated quickly and independently. This is crucial for maintaining a 

robust codebase that can evolve without breaking existing functionality. 

3. Documentation: Component unit tests serve as project documentation because they illustrate 

what the code is supposed to do. New developers can look at the tests to understand the 

component’s intended behaviour without diving deep into the implementation details. 

4. Design Feedback: Writing tests for each component unit forces developers to consider the 

design of the code. If a unit is hard to test, it might indicate design problems such as high 

coupling or poor encapsulation, which can then be addressed to improve code quality. 

5. Development Efficiency: With a comprehensive suite of unit tests, developers can work more 

confidently and efficiently. They can make changes to the code and get immediate feedback 

on what, if anything, broke, which reduces the debugging time drastically. 

 

Helm Tests are specifically designed to validate the integration and functionality of Kubernetes 

resources managed through Helm charts. These tests are essential for ensuring that Helm releases are 

correctly configured and operational within a Kubernetes environment. By leveraging Kubernetes's 

native mechanisms, Helm tests allow for automated testing of the deployment, management, and un-

installation processes of Kubernetes applications. 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   34 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

Goals: 

1. Integration Validation: Verify that all Kubernetes resources defined in the Helm chart 

interact correctly with each other once deployed. 

2. Configuration Verification: Ensure that configurations specified in the Helm chart are 

correctly applied and functional within the deployment. 

3. Operational Assurance: Confirm that the application behaves as expected in a live 

Kubernetes environment, including its response to simulated real-world conditions. 

4. Upgrade and Rollback Testing: Validate the processes of upgrading and rolling back 

releases via Helm, ensuring that these critical operations proceed without disrupting service 

availability. 

One of the primary tools utilized is Helm tests, which are provided by Kubernetes. These tests are 

designed to verify that Helm charts are correctly deploying the applications within the Kubernetes 

environment, ensuring that all Kubernetes resources are configured and interact as expected. They are 

particularly valuable for automating the deployment and testing of Kubernetes resources. Helm tests 

allow to script and run diagnostics on the deployed applications, checking for proper service 

configuration and operational behaviour directly within the Kubernetes clusters. 

 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   35 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

9 Annex II - Unit Testing Methodology 

The methodology involves a systematic approach where each unit of the application is tested in 

isolation to ensure that it performs exactly as intended. This approach minimizes dependencies and 

uses mock data and interfaces to test each component's functionality independently. 

For defining the unit test design for each component, an Excel template was used (see Figure 6). The 

skeleton of the unit test design, as outlined below, includes several key elements: 

 Test Case ID: Each test case is uniquely identified to track test execution and results systematically. 

 Test Description: This provides a brief description of what the test is intended to verify, which can 

be a specific function or a broader feature within the component. 

 Preconditions: These are the conditions that must be met before the test can be executed, ensuring 

that the environment and component state are correctly set up for the test. 

 Test Steps: Detailed steps are laid out to follow during the test. These steps guide the tester through 

the required actions to execute the test scenario effectively. 

 Expected Results: Clearly defined expectations for what the test should result in if the component 

behaves as expected. This is crucial for verifying the test's success or failure objectively. 

 Actual Results: This is where the outcomes of the test execution are recorded, providing direct 

feedback on the component's behaviour under test conditions. 

 Status: Indicates the test's pass or fail status, which is essential for assessing the overall stability and 

readiness of the software component. 

 



 

 
 

 
Document name: D5.2 ICOS Beta Release Page:   36 of 36 

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final 

 

  

 

Figure 6: Test Cases template 

A test design was created for each Unit test or Unit test group (tests that contain many functional tests 

together) for each component. 

Definition of the 

Unit Tests

Describes the features to test, including a

description of how they will be tested.

Definition of the

Interfaces to be

tested

Describe the definition of exposed interfaces

and their data types and parameters.

Unit Test Cases

descriptions

These are in the form of tables that

demonstrate scenario cases that include

interface class name, interface name,

operation/function name, input and system

output and evaluation of the expected and

actual result.

Unit Test Interface Input Output Unit Test Cases

UT#
/interface_

name
Call input: data http://URL/interface_name/data

Data

format
UTC#

Description

Description of the UTC for appropriate UT, this

involves further documentation of the

input/information model set.

Unit Test: UT number.

Class Name: The class name of the interface.

Interface name: The interface name.

Operation:
Description of the operation/functionality of the

interface.

Input: Input data and information model.

Output: Resulting output.

Expected

Result:

Description of the testing results (result as

expected or failure)

Actual Result: Required results that in the case of failure are

Invalid data

input:

Description of invalid input set (intentionally

submission for testing reasons)

Details:
Description of the testing environment and/or

software (e.g. browser).

Other remarks: Description of notes.

Screenshot Illustration of results.

Endpoint of the cloud enabler.

Information about the cloud provider.

Deployed 

Instance:

Unit Testing Matrix (UTM)

Template of the Unit Test Matrix

Template of the Unit Test Case Matrix


