

This document is issued within the frame and for the purpose of the ICOS project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070177. The opinions expressed and arguments employed

herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author’s view and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the ICOS Consortium. The content of all or parts of this document can be used and

distributed provided that the ICOS project and the document are properly referenced.
Each ICOS Partner may use this document in conformity with the ICOS Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g. web (Deliverables flagged as public will be automatically published in CORDIS

project’s page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the

Commission Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified EU-

S) EU SECRET under the Commission Decision No2015/444.

D4.2 Data management, Intelligence and

Security Layers (IT-2)

Keywords:

ICOS, Data Management Layer, Intelligence Layer, Security Layer

Document Identification

Status Final Due Date 28/02/2025

Version 1.0 Submission Date 21/02/2025

Related WP WP4 Document Reference D4.2

Related

Deliverable(s)

D4.1, D2.3, D2.4,

D3.2

Dissemination Level (*) PU - Public

Lead Participant CeADAR Lead Author Andrés L. Suárez-Cetrulo

(CeADAR)

Contributors XLAB, BSC,

ZSCALE, NKUA,

UPC, NCSRD, ENG,

TUBS

Reviewers Marc Michalke (TUBS)

Konstantinos Latanis

(Suite5)

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 2 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Andrés L. Suárez-Cetrulo CeADAR

Jaydeep Samanta CeADAR

Sebastián Andrés Cajas Ordoñez CeADAR

Romila Ghosh CeADAR

Ricardo Simón Carbajo CeADAR

Hrvoje Ratkajec XLAB

Daniel Nikoloski XLAB

Justin Činkelj XLAB

Alex Barceló BSC

Anastasios Giannopoulos NKUA

Menelaos Zetas NKUA

Anastasios Kaltakis NKUA

Ivan Paez ZSCALE

Gabriele Giammatteo ENG

Maria Antonietta Di Girolamo ENG

Vladan Velickovic ENG

Marc Michalke TUBS

Fin Gentzen TUBS

Marla Grunewald TUBS

Jordi García UPC

Andreas Oikonomakis NCSRD

Document History

Version Date Change editors Changes

0.1 21/11/2024 CeADAR First draft version of ToC

0.2 18/12/2024 CeADAR. BSC, XLAB,

ZSCALE

Updated ToC

0.3 21/01/2024 CeADAR, NKUA, XLAB,

Zetta, ENG, NCSRD,

ZSCALE, BSC

First round of contributions

0.4 29/01/2025 CeADAR Review contributions and feedback to

partners

0.5 03/02/2025 CeADAR, NKUA, XLAB,

Zetta, ENG, NCSRD, TUBS,

ZSCALE, BSC, UPC

Second round of contributions after

first review

0.6 12/02/2025 CeADAR Combined corrections from partners

and version ready for internal review

0.7 18/02/2025 CeADAR Integrated internal review feedback.

0.8 19/02/2025 CeADAR Version ready for final quality check

1.0 21/02/2025 ATOS Final version to be submitted

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 3 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Andrés L. Suárez-Cetrulo (CeADAR) 19/02/2025

Quality manager Carmen San Román (ATOS) 21/02/2025

Project Coordinator Francesco D’Andria (ATOS) 21/02/2025

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 4 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ...2

Table of Contents ...4

List of Tables ..7

List of Figures ..8

List of Acronyms ..9

Executive Summary ...10

1 Introduction ..11

1.1 Purpose of the document ..11

1.2 Relation to other project work..11

1.3 Structure of the document ..12

1.4 Glossary adopted in this document ..12

2 Data Management ...14

2.1 Functional description ..14

2.1.1 Fitting into the ICOS architecture .. 14

2.2 Technical description ...15

2.2.1 Data bus ... 15

2.2.2 Data management in the AI training workflow ... 16

2.2.3 dataClay OTLP bridge ... 17

2.2.4 Policy storage backend .. 18

2.3 Software releases ..19

2.3.1 Eclipse Zenoh 1.2.0 ... 19

2.3.2 dataClay 4.1 ... 20

2.4 Limitations and future work ...20

3 Intelligence Layer ...21

3.1 Fitting into the ICOS architecture ..21

3.2 Intelligence Layer Coordination module ...24

3.2.1 Functional description ... 24

3.2.2 Technical description ... 24

3.3 Trustworthy AI module ..28

3.3.1 Functional description ... 28

3.3.2 Technical description ... 28

3.4 AI Analytics ...35

3.4.1 AI Models .. 35

3.4.2 AIOps system .. 36

3.4.3 Model compression .. 37

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 5 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3.5 Data Processing ..39

3.5.1 Functional description ... 39

3.5.2 Technical description ... 39

3.6 AI Models and Data Repository ...40

3.6.1 Functional description ... 40

3.6.2 Technical description ... 41

3.7 Limitations and future work ...44

4 Security Layer ..46

4.1 Fitting into the ICOS architecture ..46

4.2 Security layer coordination module ...47

4.2.1 Functional description ... 47

4.2.2 Technical description ... 47

4.3 Security Scan..48

4.3.1 Functional description ... 48

4.3.2 Technical description ... 48

4.4 Identity and Access Management ..49

4.4.1 Functional description ... 49

4.4.2 Technical description ... 49

4.5 Anomaly detection ...50

4.5.1 Functional description ... 50

4.5.2 Technical description ... 51

4.6 Audit ..53

4.6.1 Functional description ... 53

4.6.2 Technical description ... 53

4.7 Trust ...55

4.7.1 Functional description ... 55

4.7.2 Technical description ... 56

4.8 Limitations and future work ...58

5 Conclusions ..59

6 References ..62

Annexes ..64

Annex I: Data management ..65

I.A Requirements ... 65

I.B Zenoh Helm chart snippet .. 67

Annex II: Intelligence Layer ...68

II.A Requirements .. 68

II.B Intelligence coordination – backend endpoints ... 70

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 6 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

II.C Intelligence coordination – frontend workflows ... 72

II.D Intelligence coordination –AI coordination frontend components and integration 75

II.E Trustworthy AI – Federated Learning Sequence Diagram & Usage Demonstration 77

II.F AI Analytics – Load balancing model and experiments ... 82

II.G AI Analytics – Metrics forecasting and internal workflows in IT-2 86

II.H Technical specifications ... 88

II.I Delivery and usage ... 90

Annex III: Security Layer ...96

III.A Requirements ... 96

III.B Example of IAM module configuration files .. 98

III.C Delivery and usage .. 99

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 7 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1: ICOS concepts and artefacts___ 12
Table 2. Sample of Tetragon observation policies ___ 55
Table 3. Data Management, Intelligence and Security Layers IT-2 parts as ICOS assets _________________ 60
Table 4. Requirements starting to be met with the IT-2 of the Data Management Component [1] __________ 65
Table 5. Requirements starting to be met with the IT-2 of the Intelligence Layer [1] ____________________ 68
Table 6. AI Analytics API endpoints __ 70
Table 7. AI Support container API endpoints ___ 71
Table 8. Intelligence Layer dependencies __ 90
Table 9. Export Metrics dependencies __ 91
Table 10. ICOS FL dependencies __ 94
Table 11. Intelligence Software packages __ 95
Table 12. ICOS requirements met with the IT-2 of the Sec. Layer Coordination and Sec. Scan modules _____ 96
Table 13. ICOS requirements met with the IT-2 of the IAM module __________________________________ 96
Table 14. ICOS requirements met with the IT-2 of the Anomaly detection module ______________________ 96
Table 15. ICOS requirements met with the IT-2 of the Audit module _________________________________ 97
Table 16. ICOS requirements met with the IT-2 of the Trust functionality _____________________________ 97
Table 17. Package information per module __ 99
Table 18. Installation instructions per module __ 99
Table 19. Licensing per module and internal element in the Security Layer __________________________ 100
Table 20. Download instructions per module and internal element in the Security Layer ________________ 101

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 8 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1. Eclipse Zenoh deployment in the stagging testbed _______________________________________ 16
Figure 2. Sequence diagram for AI training offloading (from D2.4) _________________________________ 17
Figure 3. Distribution of the Telemetry components across the Continuum nodes (from D3.2) ____________ 18
Figure 4. Intelligence Layer modules in the ICOS architecture – enhanced from D2.4 ___________________ 22
Figure 5. Modules and functionalities in AI support containers _____________________________________ 23
Figure 6. Modules and libraries in the dataClay containers for Intelligence offloading __________________ 23
Figure 7. Metric creation via model inference __ 26
Figure 8. Metric creation with model training __ 27
Figure 9. Summary bar plot highlighting the average importance of top features _______________________ 29
Figure 10. Waterfall plot showing the stepwise contribution of individual features to a __________________ 30
Figure 11. Confidence intervals in ICOS experiments over an XGBoost model _________________________ 31
Figure 12. Body response with model confidence through the Intelligence API ________________________ 31
Figure 13. Historical data (reference) vs data received while the model is in the registry (analysis) ________ 32
Figure 14. FL prototype architecture ___ 34
Figure 15. MLFlow UI showing experiments of each model training request __________________________ 36
Figure 16. Loss curves representing model’s training loss reducing with each epoch ____________________ 37
Figure 17. Distilled model results vs teacher and student performance _______________________________ 38
Figure 18. CPU (left) and RAM (right) preds for teacher, student, and distilled models __________________ 38
Figure 19. Quantisation results in experiments for CPU metrics forecasting __________________________ 38
Figure 20. CPU (left) and RAM (right) preds for the quantised vs non-quant. models and ground truth _____ 38
Figure 21. Preliminary view of the online ICOS AI Models and Data Repository _______________________ 40
Figure 22. Fragment of Figure 7 in D4.1. AI repository as online catalogue external to ICOS elements _____ 41
Figure 23. Security layer modules and functionalities in the ICOS architecture ________________________ 47
Figure 24. Sequence diagram for the Keycloak automation script ___________________________________ 50
Figure 25. LOMOS architecture ___ 51
Figure 26. Sample LOMOS anomaly score __ 52
Figure 27. Audit module architecture ___ 54
Figure 28. Self-signed CA architecture __ 56
Figure 29. Cilium-Wireguard Encrypted Networking___ 57
Figure 30. Zenoh configuration Helm chart __ 67
Figure 31. Authentication workflow with Keycloak __ 72
Figure 32. Telemetry integration workflow __ 72
Figure 33. Export Metrics API Workflow __ 73
Figure 34. Export Metrics API Swagger documentation __ 74
Figure 35. Intelligence Coordination API Swagger documentation __________________________________ 74
Figure 36. Prediction of CPU consumption (percentage) ___ 76
Figure 37. ICOS Grafana telemetry dashboard ___ 76
Figure 38. Thanos query for CPU frequency at an ICOS agent _____________________________________ 76
Figure 39. Interactions between ICOS elements and actions during FL training processes _______________ 77
Figure 40. Screenshots of the console output and the running containers during the FL process ___________ 79
Figure 41. Screenshots of the FL related build process steps and output ______________________________ 80
Figure 42. Screenshot of the successful installation of the FL env ___________________________________ 80
Figure 43. Console output from two clients (left – t2/t3), and server aggregating the updates (right – t1). ___ 81
Figure 44. Logs indicating the completion of the FL training process – same terminals as in Figure 43 _____ 81
Figure 45. The DRL interaction loop between a DECOFFE-based ICOS node and its env for task offloading 82
Figure 46. Simulation parameters to train DECOFFEE DRL agents ________________________________ 83
Figure 47. Experiment tracking and learning curves over training episodes in DECOFFEE experiments ____ 84
Figure 48. Performance comparison of DECOFFEE against six offloading schemes under varying conditions 85
Figure 49. Workflow of Metrics Collection, Forecasting, and Model Training in an Onboarding App _______ 87
Figure 50. Predictive Intelligence Flow for Metrics Forecasting ____________________________________ 87
Figure 51. Example of dynamic_values.yaml ___ 98
Figure 52. Example of static_values.yaml ___ 98

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 9 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /

acronym

Description

AI Artificial Intelligence

AIOps AI Operations

API Application Programming Interface

CPU Central Processing Unit

DRL Deep Reinforcement Learning

DDRL Decentralised Deep Reinforcement Learning

Dx.y Deliverable number y belonging to WP x

FL Federated Learning

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IAM Identity and Access Management

IT-1 First iteration

IT-2 Second iteration

JSON JavaScript Object Notation

JWT JSON Web Token

LSTM Long Short-Term Memory

ML Machine Learning

MLOps Machine Learning Operations, used interchangeably with

MSE Mean Squared Error

OIDC OpenID Connect

PIP Pypi Python library

REST Representational state transfer

RNN Recurrent Neural Network

TLS Transport Layer Security

mTLS mutual TLS

UI User Interface

WP Work Package

WPx Work Package number x

YAML yet another markup language

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 10 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

This document is the implementation deliverable of the ICOS components Data Management,

Intelligence Layer Module, Security Layer Module, and APIs and Interfaces in IT-2. The document,

together with its annexes, presents the following aspects of the Data Management, Intelligence and

Security Layers: a) their functionalities, b) prototype architecture and how they fit into the general ICOS

architecture, c) their technical description and specifications, d) delivery (package, installation,

download) and licensing information, and any limitations and future work to be done for the Final ICOS

release.

In IT-2, the Data Management component continues to play a critical role in optimising data access and

distribution across ICOS layers while maintaining infrastructure transparency. Building upon the

foundation established in D4.1, this iteration enhances software architecture and integration with other

ICOS components. The Data Management Layer addresses key data exchange needs, including

transport, mutable data structures, and compute-intensive operations. Leveraging Eclipse Zenoh for

communication and dataClay for distributed storage, it supports functionalities such as the ICOS data

bus, training offloading, telemetry processing, and policy storage.

The Intelligence Layer in IT-2 includes the AI Coordination module, AI analytics, Trustworthy AI

modules, Data Processing module, and AI Models and Data Repository. The AI coordination module

has been extended to include a frontend to interact with the ICOS Meta-OS. This frontend, reachable

from the ICOS CLI, aims to query telemetry to realise when new system utilisation or energy-related

metrics need to be predicted and then requests training a model or regular predictions to the AI

coordination backend presented in IT-1; furthermore, it allows ICOS users to request new metrics

forecasts through an API (Export Metrics API). The AI coordination backend communicates with the

Data Processing module, which is in charge of data access and manipulation, and the AI analytics

module that builds and deploys AI models (support for multivariate modelling in IT-2 and model

compression to allow AI workloads at the edge), the Trustworthy AI module, providing model

explainability, monitoring, and privacy-aware model training (Federated Learning), and will connect to

the AI Model and Data Repository, to allow reusing models from the online repository.

The Security Layer in IT-2 builds upon the foundation established in IT-1, incorporating advancements

in identity management, anomaly detection, auditing, and trust. The Security Layer Coordination

module facilitates seamless integration between security components and other ICOS modules. The

Identity and Access Management (IAM) module ensures secure authentication and authorisation across

the system. The Security Scan module actively monitors deployed ICOS infrastructure for

vulnerabilities and compliance issues, while the Anomaly Detection module leverages AI to identify

potential security threats. Additionally, the Audit module enhances system transparency, and Trust

functionality guarantees the identity of ICOS components and enforces encrypted, verifiable

communication between them.

All presented software will be used in the final iteration of ICOS (Complete ICOS version). Components

under the future work section will still be reviewed and updated in the D5.3 – Complete ICOS version

(M32) [8] as their integration is in progress at the time of writing this deliverable (M30).

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 11 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

The purpose of this document is to report design and implementation efforts done in WP4 in tasks T4.1

(Data Management), T4.2 (Intelligence Layer Module), T4.3 (Security Layer Module) and T4.4 (APIs

and Interfaces) regarding the development of ICOS components Data Management, Intelligence and

Security Layers in the period M14-M30. It also delivers the second version (IT-2) of the Data

Management, Intelligence Layer and Security Layer software using Deliverable 4.1 – “Data

management, Intelligence and Security Layers (IT-1)” as input.

In this regard, the document plus its annexes presents the following aspects for each layer:

 the functionalities,

 the prototype architecture and how it fits into the general ICOS architecture,

 the technical description and specifications,

 delivery (package, installation, download) and licencing information, and

 current limitations and future work to be done for the next releases (ICOS Final release).

In this iteration, the work done in T4.4 is directly included in the functionalities of each ICOS

component, presented in individual sections below.

1.2 Relation to other project work

The second implementation deliverable of WP4, “D4.2 ICOS components Data Management,

Intelligence and Security Layers”, the software and document relate to:

 Tasks T2.2 (Compute continuum requirements definition) and T2.3 (AI, data management and

trust/security requirements) on the analysis of ICOS-related technologies, the definition of project use

cases, and gathering of system requirements for the ICOS components.

 Task T2.4 (Architectural Design) and deliverable D2.4 – “ICOS architectural design (IT-2)” [6] that

defines the updated ICOS system architecture, describing how its layers, including Data Management,

Intelligence, and Security, function, what their properties are, and how they interact.

 Deliverable "D2.3 - ICOS ecosystem: Technologies, requirements, and state of the art (IT-2)” [1]

summarising work conducted in the second iteration of ICOS in the task T2.1 – (Ecosystem

identification: Baseline technologies) regarding use case descriptions, requirements gathering, and

analysis of the state-of-the-art baseline technologies, which were also used in IT-1.

The work reported in the current document starts from the base set in the second integrated ICOS Beta

release, delivered in M22, and covers works performed for posterior ICOS releases until the Final ICOS

release (M32).

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 12 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

1.3 Structure of the document

This document follows the structure presented in D4.1. Thus, it is structured in seven major sections:

 Section 1 – Introduction covers the objectives of the document, introduces its content, structure,

relationships with other project’s documents and the glossary,

 Section 2 – Data Management provides the functional and technical description for all the

components and new integrations reached in IT-2. This section also discusses constraints and future

work for the final release of the Data Management Layer,

 Section 3 – Intelligence Layer provides a functional and technical description of all its modules,

delivery (package, installation, download), and licensing information, as well as any limitations and

future work to be done concerning integration activities for the final release of the Intelligence Layer.

 Section 4 – Security Layer provides the functional and technical description, delivery (package,

installation, download), licensing information and as well as project constraints and future integration

work for the Security Layer modules towards the final release,

 Section 5 – Conclusion summarises the content of the document and provides considerations on how

the technical work will finalise in the project.

 Section 6 – References: lists references used.

 Section 7 – Annexes: provides various annexes with more detailed explanations of the main technical

sections of the document.

1.4 Glossary adopted in this document

The following table provides definitions of ICOS concepts and artefacts (as identified in D2.3 [1] and

D2.4 [6]) that are discussed in the following sections of this deliverable.

Table 1: ICOS concepts and artefacts

Cloud Continuum

An aggregation of heterogenous resources (CPU, memory, storage, networks, IoT devices,

intelligence) managed seamlessly end-to-end that may span across different administrative/technology

domains in multi-operator and multi-tenant settings.

ICOS Agent

The ICOS software component that needs to be installed on each node with actual underlying

orchestrator (OCM or Nuvla) that manages the infrastructure where the jobs are executed. ICOS

Agents are distributed throughout the continuum.

ICOS Controller

The ICOS Controller is responsible for managing the ICOS continuum, which

consists of a set of agents based on proximity criteria, by providing control, intelligence decision-

making and lifecycle management.

ICOS Instance

A subset of the CC participating in the execution of a multi-component Application of a certain

topology, resource requirements and constraints.

ICOS Node

Any resource, physical or virtual, that is running either the ICOS software (can be either

an ICOS Controller or ICOS Agent).

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 13 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

ICOS Shell

A client distribution that is used to access the ICOS. The ICOS Shell runs externally to the ICOS

Instance.

ICOS User

The ICOS user is the actor that uses ICOS to deploy his/her applications over suitable infrastructure,

exploiting the ICOS management and optimisation capabilities to deploy applications fuelling novel

business opportunities.

ICOS Application

User application deployed on an ICOS instance.

ICOS testbed

Testing environment provided by NCSRD for ICOS.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 14 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

2 Data Management

The Data Management component is responsible for managing and enabling access to data from the rest

of ICOS layers, in a way that optimises the performance of the components and leverages the continuum

characteristics of the architecture.

It is a transversal component in the ICOS architecture, aimed at supporting the various data needs in the

rest of the layers, making the distribution and heterogeneity of the infrastructure transparent to them,

and providing efficient data access at the same time.

In previous deliverable D4.1 [7] the foundation of the Data Management was established and the basic

requirements for IT-1 were detailed. This deliverable, D4.2, aims to build upon that previous deliverable

and provide further detail on the changes and improvements that have been included in the software

architecture for IT-2. This document will also provide a more in-depth view on different integrations

with other ICOS layers.

This section is structured as follows: the functional description of the Data Management is provided in

subsection 2.1. Subsection 2.2 describes the technical details of the solution, and the different

integrations present in IT-2. A brief overview and release notes on the new software releases for Zenoh

and dataClay (the software blocks that shape the Data Management) can be found in 2.3. We finalise

the Data Management section on this document discussing some limitations and future work in 2.4.

Table 4 in Annex I.A shows the different requirements of the ICOS project in which there is an

involvement from the Data Management layer. Most of them were already presented in D4.1 and are

related to the IT-1 efforts of the project, but the IT-2 brings attention to several new key requirements.

2.1 Functional description

At a very high level, the Data Management Layer will be addressing three distinct needs regarding data:

 Transport: meaning all the data messages and brokering, as well as handling data in motion.

 Mutable data structures: data that requires concurrent access and modifications.

 Compute: Very data-intensive computation that benefits from having data locality.

These basic needs, although overlap a little bit, categorise quite well the pillars that the Data

Management is providing to the ICOS project.

The two software blocks that ICOS will use for fulfilling the Data Management Layer are the following:

 Zenoh[20] – a pub/sub/query protocol,

 dataClay[21] – a distributed active object store.

2.1.1 Fitting into the ICOS architecture

The general ICOS architecture for IT-2 was described in D2.4 and briefly depicted the different

responsibilities and placement of the Data Management Layer software components.

We can find the following software components in the ICOS architecture:

 Data Bus for ICOS-Application communication: This communication backbone enables transversal

communication on ICOS applications. This communication will happen while the application is

agnostic to the exact topology and its changes. An example of the usage of this communication can

be seen in the Topology Exporter functionality of ICOS. The data bus feature is achieved through the

deployment of Zenoh components in the agents.

 Training offloading on the Intelligence Layer: A software component from the Data Management

Layer is used by the Intelligence Layer in order to offload training operations. This allows an efficient

and distributed usage of continuum resources (i.e. avoids roundtrip to far clouds when there are

available computing resources closer). This is achieved through the deployment of dataClay services

distributed in the continuum.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 15 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

 OTLP Bridge on the Telemetry flow: To improve responsiveness and resource utilisation, a Data

Management component is included among Telemetry components and is able to process data coming

from Telemetry Agents. This software component, a dataClay service deployed on the agent next to

the Telemetry Gateway, is able to take advantage of the logs that are being sent through standard

protocols and provide them to other ICOS components that need that data. This can be done in a fast

and efficient manner by taking advantage of data locality and minimising data copies.

 Policy Storage backend: The Dynamic Policy Manager can take advantage of dataClay features and

use dataClay as the storage backend for its mutable persistent data. This simplifies the deployment of

the Dynamic Policy Manager and provides a storage backend that is able to take advantage of the

distributed nature of ICOS infrastructure.

The following section (2.2) contains more in-depth technical details on these different software

components and their interaction.

2.2 Technical description

Previous deliverable D4.1 included extensive information on the software solutions used for

implementing the Data Management layer. Most information in such document is still applicable at the

time of writing D4.2. For some further details covering the releases and new features of these software,

see Section 2.3.

The present deliverable focuses on IT-2 and thus the following subsections will elaborate on the

technical aspects related to the new integrations involving Data Management.

2.2.1 Data bus

Eclipse Zenoh is a communication middleware designed to provide a set of unified abstractions to deal

with data-in-motion, data-at-rest and computations at internet scale. Zenoh is composed of two main

parts, firstly a decentralised and distributed networking protocol, and secondly, the Zenoh APIs to

manage it.

Eclipse Zenoh APIs are available for the most popular programming languages (i.e. Rust, Python, C,

C++, REST) the core of the networking routing and messaging mechanisms are written in Rust. The

Zenoh v1.2.0 Rust API includes a publish, a subscribe and query examples, it can be found here:

https://docs.rs/zenoh/latest/zenoh/.

To enable the direct communication between the ICOS controller and the ICOS agent nodes. Three

zenoh-routers have been deployed in the stagging testbed 1in the NCSR”D” infrastructure with the

purpose to connect the ICOS controller with two cluster nodes, as illustrated in Figure 1.

The config file (i.e., values.yaml) included in the Zenoh Helm Chart describes the connecting end-points

and the image/version of the feature that should be used, in this case it is eclipse/zenoh tag:1.0.0, this

image is taken from the Docker Hub container repository. See the configuration in the source-code

extract provided at Annex I.B.

1 https://production.eng.it/gitlab/icos/data-management/zenoh-helm-chart

https://docs.rs/zenoh/latest/zenoh/
https://production.eng.it/gitlab/icos/data-management/zenoh-helm-chart

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 16 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 1. Eclipse Zenoh deployment in the stagging testbed

This Data bus is part of the Topology Exporter, and it is a key aspect to satisfy requirement CC_FR_03

(see Annex I.A).

2.2.2 Data management in the AI training workflow

The data management component plays a crucial role in a pivotal aspect of the ICOS Intelligence Layer,

its AI training workflow, a task that requires both a high amount of data and a high number of

computational resources. This process is further explained, from the point of view of the Intelligence

Layer, in Section 3.5 (Data processing).

Figure 2 shows the sequence diagram of this training offloading procedure. In this figure we can see

how the dataClay server is responsible for performing the model training operation, i.e. computation.

The algorithms and data are provided by the Intelligence Layer, but dataClay offers a hardware and

location agnostic interface for running this process.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 17 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 2. Sequence diagram for AI training offloading (from D2.4)

This design allows deployment of the dataClay backend in environments where there are enough

computational resources; this is transparent for the Intelligence Layer, which can use dataClay through

its object-oriented interface, without having to account for the distribution or location of data and

computational resources.

This feature is responsible for satisfying requirements CM_FR_02 and CM_FR_15.

2.2.3 dataClay OTLP bridge

As already explained in a previous deliverable (D3.2 [4]), the Logging and Telemetry architecture

contains a Telemetry Gateway in the ICOS Agent which aggregates logging from the different ICOS

Nodes (Edge Node or Cluster). This is shown in Figure 3.

The communication between Telemetry Agent and Telemetry Gateway uses the OpenTelemetry

protocols and standards; a new component within the Data Management, named dataClay OTLP Bridge,

is included in IT-2 and deployed in the ICOS Agent. This component is able to aggregate live telemetry

coming from the different Telemetry Agents and provide them for real-time processing of this data,

transparent to the details of the topology, allowing fast and local access to this data.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 18 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 3. Distribution of the Telemetry components across the Continuum nodes (from D3.2)

This design takes advantage of the continuum and the resources available in the ICOS infrastructure. A

current application of the dataClay OTLP Bridge is the privacy-aware model training process (Federated

Learning) developed as part of the Intelligence Layer Trustworthy AI component. This is detailed in

Subsection 3.3.2.4 (Federated Learning). Thanks to this component, the Federated Learning solution

avoids a roundtrip to the Controller, increasing data locality and resulting in a more efficient resource

utilisation.

2.2.4 Policy storage backend

In D3.2 [4], different integrations related to the Policy Manager were discussed, and one of those was

the Policy Storage backend using dataClay.

This storage backend takes advantage of the object-oriented interface offered by dataClay and allows to

programmatically use dataClay persistent and mutable objects from the Dynamic Policy Manager. The

Dynamic Policy Manager offers a pluggable storage mechanism. In the previous release, the storage of

the information policies used MongoDB as a non-relational database through an ORM Python library.

The current release of the Dynamic Policy Manager supports dataClay as the Policy Storage backend,

using it through the native object-oriented interface of dataClay. This results in a versatile backend that

is able to store data in the continuum and overall results in a tight integration of ICOS components.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 19 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

2.3 Software releases

The following subsections present the latest releases for Zenoh and dataClay (the software used to fulfil

the Data Management layer). These software releases have happened during the IT-2 development cycle.

Delivery and usage of this Software remain as described in D4.1[7].

2.3.1 Eclipse Zenoh 1.2.02

On October 21, 2024, Eclipse Zenoh v1.0.0 was released, and this marked a milestone in the

development of the data management component as the open-source project moved out from incubation

status to a full-project status, which implies a higher quality and stability in the source-code level,

offering backward and forward compatibility for the coming versions for the Zenoh API.

Moving forward three months, six intermediate releases has been done, at the time of writing this

deliverable, the latest release of Eclipse Zenoh is v1.2.0. This newest version brings new features and

improvements while keeping focus on the values of the ICOS project. This update reflects priorities

such as adaptability, security, and performance optimisation, ensuring an efficient and interconnected

ecosystem for devices, applications, and data.

 Openness and Interoperability: Zenoh 1.2.0 embraces openness, enabling diverse technologies to

collaborate. For example, the new querier API supports efficient and optimised data retrieval.

Enhanced support for ROS2, a widely used framework in robotics, strengthens connections between

Zenoh and other platforms, facilitating interoperability. There is an ongoing effort to integrate natively

Zenoh, as Tier-13 communication middleware in the coming ROS2 release in May 2025; this is

achieved in rmw_zenoh4.

 Adaptability and Scalability: Zenoh 1.2.0 introduces features that adapt to varying technological

needs. The stabilisation of liveliness API support ensures real-time monitoring of active participants

in the network. Zenoh-Pico5, which is made for small IoT devices, has also been updated to work with

the latest version. With huge improvements in performance and extension in scope as it is now

compatible with Raspberry Pi Pico series6.

 Security and Privacy: The protocol enhancements address critical issues such as fragmentation and

message integrity, ensuring secure and reliable data transmission. These updates safeguard

interactions across the network, whether between IoT devices or in the cloud.

 Performance Optimisation: In addition to the querier, the new advanced publisher/subscriber

mechanisms also improve data throughput and reliability. These optimisations enhance system

performance while minimising resource consumption, key to efficient IoT-to-cloud integration.

 Technology Agnosticism: Zenoh 1.2.0 is committed to supporting diverse hardware and software

platforms, including new features for QNX operating systems, highlights its technology-agnostic

approach. This openness reduces dependence on specific vendors and encourages widespread

adoption.

 Future Market Enablement: Zenoh continues to foster innovation by bridging gaps in IoT-to-cloud

operations. The new tool ZettaC2 (for Zetta Control Center) is now available on all operating systems.

It has been made for monitoring and managing Zenoh systems. By simplifying complex interactions,

it paves the way for emerging edge markets and collaborative data-sharing environments. Zenoh 1.2.0

demonstrates how foundational values like openness, adaptability, security, and performance guide

advancements in IoT-to-cloud ecosystems, delivering a system designed for the future.

2 https://github.com/eclipse-zenoh/zenoh/releases/tag/1.2.0
3 https://github.com/ros2/rmw_zenoh/issues/265
4 https://github.com/ros2/rmw_zenoh
5 https://github.com/eclipse-zenoh/zenoh-pico
6 https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html

https://github.com/eclipse-zenoh/zenoh/releases/tag/1.2.0
https://github.com/ros2/rmw_zenoh/issues/265
https://github.com/ros2/rmw_zenoh
https://github.com/eclipse-zenoh/zenoh-pico
https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 20 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

2.3.2 dataClay 4.1

In November 2024, dataClay v4.1 was released7. This new release includes several features and

improvements that streamline deployment and development of Continuum applications and shape

dataClay software beyond its HPC inception and more into a full-fledged continuum-ready storage

system solution.

The following dataClay features are key for a successful Data Management within the ICOS project:

 Async: migrating to an async implementation (instead of threads) results in a lighter service, with

higher concurrent capabilities and a more efficient use of processing resources. This is crucial for

constrained devices, a common occurrence in computing continuum environments. This new release

includes several fixes and improvements related to the internal async implementation.

 Proxy: a new microservice within the dataClay stack, which simplifies the deployment of dataClay

services in restricted networks or NAT-ted environments. Given the distributed nature of the

computing continuum, where full connectivity between devices is not guaranteed, this new

microservice improves the flexibility of dataClay deployments. This new release fixes several bugs

that challenged its usage within ICOS architecture.

 JWT token support: the previous proxy feature also includes support for processing and validating

JWT tokens [34]; this mechanism is compatible with the ICOS security architecture and thus solves

the challenge of both authentication and authorisation across distributed environments. This new

release includes more examples and internal mechanisms to accommodate more kinds of tokens.

2.4 Limitations and future work

The deployment of Eclipse Zenoh v1.0.0 was performed manually, following the Open Call

infrastructure On-Boarding v1.3 document [9] provided by the testbed coordinator together with the

WP5 leader. At the time of writing this deliverable, the software engineer needs to request the authorised

authentication to the staging test bed and get the right access level to the infrastructure. This will be

streamline in the security characteristics on the ICOS platform.

The deployment of dataClay services also needs manual intervention given that there is no automatic

discovery of storage/computational resources. Placement of dataClay services will impact the task

offloading mechanisms used by the Intelligence Layer and thus the user performing the initial

deployment process must take that into account and take the appropriate decisions.

Communication between Data Management components is partially automatic. Our goal is to provide

the necessary automations in order to establish connectivity between the services needing it (e.g. the

different Zenoh routers, or the dataClay backend services). At the time of submitting this document

(M30), the workaround includes some manual steps as part of the deployment process.

7 https://dataclay.readthedocs.io/en/4.1.0/releasenotes/4-x.html#november-2024

https://dataclay.readthedocs.io/en/4.1.0/releasenotes/4-x.html#november-2024

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 21 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3 Intelligence Layer

This section presents the progress regarding development and implementation of the Intelligence Layer

modules and components from IT-1 as presented in D4.1 [7] to IT-2 as presented in this deliverable.

In IT-2, multiple enhancements have been introduced in each module, for instance:

 AI Analytics:

 AI multivariate and multioutput models can now be trained in the Intelligence Layer using multiple

metrics, for instance, to predict CPU and memory utilisation at once.

 AI model compression methods have been integrated within AI Analytics to improve AI model

efficiency using quantization and knowledge distillation [16]. This can be enabled during model

training.

 The AIOps framework MLFlow has been included within the Intelligence Layer for experiment

tracking and visualise model evaluation results.

• Model meta-information has been integrated into the MLFlow registry for the same purpose.

 Trustworthy AI:

 support for privacy-aware model training (federated learning) has been added, which also intends

to reduce data movement.

 model explainability has been integrated into MLFlow to enhance model transparency with SHAP

[30], a framework initially presented in D4.1 [7]

 model learning curves (training and validation) added in the MLFlow framework to understand AI

model’s suitability.

 confidence scores and confidence intervals added into each model prediction at the Intelligence

coordination module backend (Intelligence API presented in D4.1 [7] to aid in decision-making

processes rating how confident the model is per prediction output.

 AI Coordination:

 Frontend API created to interact with the MetaOS. This is reachable from the ICOS Shell using

Keycloak [40] for Identity and Access Management; it queries Telemetry to gather ICOS node

metrics and interacts with the backend API to request model training and inferencing.

 Data processing:

 Enhancements integrating with dataClay [21] for data access and AI model training offloading.

This section also introduces the AI Models and Data Repository, an online repository that acts as the

final Intelligence Layer module, to be delivered in D4.3 – “ICOS Dataset and AI models marketplace”.

The section is structured as follows: we present the final (IT-2) design of the Intelligence Layer in

Subsection 3.1, an in-depth update in IT-2 over the Intelligence coordination module in Subsection 3.2,

the Trustworthy AI module in Subsection 3.3, the AI Analytics module is presented in Subsection 3.4,

the Data Processing module in Subsection 3.5 and we introduce AI Model and Data Repository in

Subsection 3.6.

Next, we document project constraints and Software limitations in Subsection 3.7. Finally, we document

licensing and instructions to download and set up the Software in Annex II.I.

3.1 Fitting into the ICOS architecture

This subsection presents the final (IT-2) design of Intelligence Layer modules, components and

functionalities.

The ICOS Intelligence Layer is located in the ICOS Controller as stated in D2.4 [6]. The Intelligence

Layer contains the following modules:

1. The Intelligence Layer Coordination module, which is made of two components:

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 22 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

 Intelligence coordination frontend: this component has the Export metric API that

communicates with the ICOS Shell, requests model training and inference to the Intelligence

coordination backend covered below, reading data for inference and training, and storing

model results into Telemetry. It also verifies the user’s permissions and authentication against

Keycloak.

 Intelligence coordination backend: this component receives requests from the frontend for

training and inference, returning inference results; it stores models in its model registry, and

communicates with all other Intelligence Layer modules and APIs (e.g. LOMOS API “2”

described in Section 4.5).

2. The AI analytics module, which handles model training, inferencing, and integrates model

compression and analysis.

3. The Data Processing module, which provides data pipelines as introduced in D4.1 [7] and

communicates with Data Management to offload model training (see Section 2.2.2) and access

data available across the ICOS infrastructure.

4. The Trustworthy AI module, integrated within the Intelligence Layer to enhance confidence in

the models by leveraging model monitoring and explainability. Part of this module is the

privacy-aware training capability (federated learning), which integrates with the AI analytics

module for model training and the Data Processing module to initiate the federated learning

process across the ICOS infrastructure.

Outside of the ICOS controller, we find:

 the AI Models and Data Repository, which is an online repository of AI models trained in ICOS. It

also contains datasets used to train such models. The Intelligence coordination backend will offer a

client to communicate to this repository in D4.3 – ”ICOS Dataset and AI Models Marketplace”,

allowing the Intelligence Layer to import pre-trained models.

All of these are illustrated in Figure 4.

Figure 4. Intelligence Layer modules in the ICOS architecture – enhanced from D2.4

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 23 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Additionally, this project will provide containers for ICOS users to run AI workloads leveraging

the same library versions as Intelligence at the controller, empowering them to train models and

contribute to the AI Models and Data Repository, enhancing this way progressively the list of models

available online. Such containers receive the name of AI support containers. This also will enable use

cases to easily integrate with containers running data management libraries like dataClay, which is

usable for AI offloading across the ICOS infrastructure, as introduced in Section 2 of this document.

AI support containers, presented in Figure 5, were initially introduced in D2.4 to run AI in ICOS agents

(see Figures 9 and 10 in Section 3.2.2 of D2.4 [6]). After task force discussions concerning the MetaOS

architecture and overall security, MetaOS-integrated AI has been left solely for the ICOS controller.

Use cases will still be able to use AI support containers managed by users in their own infrastructure

(edge devices).

Figure 5. Modules and functionalities in AI support containers

Regarding AI training (and federated learning) offloading, the design stays as presented in Figure 2 of

this deliverable and in D2.4. The main difference concerning learning tasks is that the ICOS agent no

longer plays a role in the process; the learning process is offloaded instead to a node in the ICOS

infrastructure running a dataClay container, as specified in Section 2, with the relevant AI libraries (see

Figure 6).

Figure 6. Modules and libraries in the dataClay containers for Intelligence offloading

As part of the ICOS Final release (D5.3 [8]), instructions on how to run AI support and dataClay

containers to offload AI will be provided.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 24 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3.2 Intelligence Layer Coordination module

Initially introduced in D4.1, the Intelligence Layer coordination module allows AIOps across the cloud

continuum. It provides mechanisms for sharing, updating, and deploying models. It interacts with a

model registry that stores essential metadata such as model descriptions, algorithms, and performance

metrics obtained during model evaluation.

 D4.1 established a framework for managing and training basic ML models. The initial focus was to

provide an API and model registry able to serve models provided as well as offload training using the

Data Management component.

 D4.2 enhances AI pipelines by adding a new frontend API that ensures seamless communication with

the Meta Kernel Layer. Furthermore, the internal backend (Intelligence API) now integrates with new

functionality from other Intelligence Layer modules (e.g., enhanced pipelines, model monitoring,

compression, and explainability, new algorithms, and MLFlow integration).

3.2.1 Functional description

The main addition to this module in IT-2 is an Intelligence Layer coordination frontend API. This is

visible in Figure 4 as the main access point from the ICOS Shell and bidirectional communication point

with Telemetry.

This frontend API, due to its nature of reading and exporting AI metrics predictions from and to

Telemetry, receives the name of Export metrics API. This component of the Intelligence Layer

coordination module acts as a middle layer between WP3 components and the Intelligence Layer.

 The export metrics API, upon request to generate predictions, queries the Intelligence Layer (backend)

API for the requested model predictions and uploads it to the telemetry periodically for a specified

time interval. Similarly, when a request is made to the export metrics API to train a model for a specific

node, for instance, metrics forecasting, the data is collected from Thanos and read by the Intelligence

Layer API to train that specific model and saved in the model repository ready to be served for model

inferencing.

IT-3 will see the deployment of the intelligence coordination module alongside other WP3 modules.

This integrated system will facilitate automated model training, inference, retraining, and monitoring,

ensuring continuous improvement of model performance in the production environment.

At the time of writing this deliverable, Intelligence meets most of the requirements defined by

WP2. Basic functionality was met for all requirements between IT 1 and IT 2.2 except for Federated

learning-related requirements (CM_FR_16, SST_FR_04), where integration work is being

performed towards IT-3. Table 5 in Annex II.A reviews the degree of accomplishment of each of these

in each iteration.

As described in D2.4 and in Section 3.1, the Intelligence Layer coordination module is located at the

ICOS controller and communicates with the ICOS Shell, Meta-Kernel Layer and Telemetry. The

architecture of this module and its interaction with other components is also described in the D4.1 which

showcases the Data management, Security Layer and Distributed Meta Kernel layers respectively.

3.2.2 Technical description

The Intelligence Layer coordination module is built on Python 3.10 and is packaged as Docker container

for deployment at the ICOS controller which is already described in D4.1 [7]

In IT-1, Data processing and AI Analytics were the main modules supported in Intelligence Layer

coordination. In IT-2, support for new functionalities in these modules has been added as well as for the

Trustworthy AI module (this module is described in detail later in Subsection 3.3).

The Intelligence Layer coordination module is mainly composed of two components:

 AI coordination backend (Intelligence API): This serves as the foundational backend component for

the Intelligence coordination module. Its responsibilities encompass the entire spectrum of model

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 25 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

operations, including training, data processing, model compression, retraining with drift detection

capabilities, and inference request processing. The updated list of endpoints for this API backend can

be found in Annex II.B.

 AI coordination frontend (Export metrics API): This acts as a gateway to the Intelligence API,

facilitating model training and inference requests originating from various ICOS modules.

Additionally, it plays a crucial role in data preparation. By leveraging telemetry data sourced from

Grafana, Prometheus, or Thanos and managed by the Data Management component, the Export

Metrics API enables the Intelligence API to effectively preprocess time-series data for training both

univariate and multivariate models.

Since the Intelligence coordination backend was already described in the Intelligence coordination

sections of deliverables D4.1 and D2.4, we devote the rest of this section to explaining the AI

coordination frontend, components that interact with it, and the nature of these interactions.

We will start linking this to D3.3 – “Meta-Kernel Layer Module Integrated (IT-2)” [5], on the integration

performed between the ICOS Shell and the Intelligence Layer. This piece of integration, which is

achieved through the Export metrics API, is introduced in the next subsection.

3.2.2.1 User interaction

To allow for interaction with the system by the user, the Export Metrics API is integrated with parts of

the ICOS Shell. Currently, the ICOS CLI allows for interaction with the functionality of the intelligence

functions through two commands: "train metrics" and "predict metrics". Both commands result in POST

requests being sent to first the ICOS shell backend and then the Export metrics API as described in the

next subsection.

 Each of these calls finally targets the respective endpoint of the Export Metrics API, namely

/create_model_metric and /train_model_metric.

 The requests furthermore have the authentication token of the user attached (see Section 4.4), allowing

for evaluation by the intelligence components.

For both commands, a payload in JSON format is sent, which defines all the needed information and

context for the respective functionality, which is further described in the next subsections. The training

or prediction process result is then communicated back to the user through the CLI, displaying the

respective output. The ICOS shell hereby serves as a stateless middleware to translate the queries and

provide an easy user interface. Some of these functionalities are also planned to be implemented into

the ICOS GUI to allow for even better accessibility of these functionalities.

3.2.2.2 AI coordination frontend – Export Metrics API

As effective monitoring of metrics is vital for maintaining system reliability, the ICOS Export Metrics

API project ensures comprehensive metric tracking and analysis. Leveraging the prometheus_client

library, the project ensures effective monitoring of system metrics and predictive insights through

seamless integration with Prometheus [24][, Thanos, Grafana, and Intelligence coordination backend.

All the components and libraries part of this process are covered in Annex II.D.

The export metrics API offers functionality for real-time metric tracking and predictive analysis,

addressing the following four objectives:

 1) Metric creation: This feature supports the creation and management of a wide range of metric

types, such as Counter, Gauge, Info, and Enum. These types cater to diverse monitoring needs. For

instance, Counters are useful for tracking cumulative values like the number of requests processed,

while Gauges allow tracking values that can fluctuate, such as memory, CPU and energy consumption

usage. Additionally, Info metrics provide metadata-like information, and Enum metrics are

particularly effective in representing finite states. The API also enables dynamic updates to these

metrics, making it easier for system operators to adapt monitoring configurations to changing

requirements.

The Export Metrics API supports both dynamic and static metric creation.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 26 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

- Dynamic metric creation occurs when a request is made via the /create_model_metric endpoint,

generating metrics on demand based on telemetry data and machine learning models. This dynamic

process is targeted to applications running in ICOS, whose metrics to be forecasted may differ

from one to another.

- Static metric creation operates in the background, periodically querying the ICOS Aggregator data

in Telemetry [4] to detect newly added nodes in the ICOS infrastructure. When a new node is

identified, the API automatically provisions default metrics for CPU, Memory, and Energy

consumption. Conversely, if a node is no longer present in the ICOS environment, the

corresponding metrics are automatically unregistered, ensuring resource efficiency and accurate

monitoring. This static process is targeted to core metrics of the ICOS Meta-OS, such as CPU

utilisation and energy consumption. MetaOS processes, such as the matchmaking module, use

future predicted values of these metrics to be AI-driven.

 2) Predictive metrics: Telemetry-based metric creation is a critical feature that combines real-time

data from sources such as Grafana or Prometheus and Thanos with AI models hosted at the

Intelligence Layer. This enables the creation of predictive metrics, where historical data trends and

current states are analysed to predict system behaviour. For example, this could include forecasting

workload surges (on CPU, memory, etc) or identifying potential anomalies before they impact

operations. The integration with predictive models ensures that monitoring extends beyond reactive

systems to become a proactive solution.

 Predictive metrics are created using the /create_model_metric endpoint, which simplifies the

interaction between telemetry data and the Intelligence Layer (Figure 7).

Figure 7. Metric creation via model inference

 3) Model training: the frontend API also facilitates model training workflows to the MetaOS, by

preparing datasets using Telemetry data sourced from Grafana or Prometheus/Thanos.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 27 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

• These datasets are then posted to dataClay, where they are used to train AI models via the

Intelligence coordination backend.

• The trained models are subsequently then used again at metric creation, enabling the generation

of new predictive metrics. This feature ensures that the system evolves alongside the monitored

environment, continuously learning and improving its predictions.

 The training process is initiated via the /train_model_metric endpoint from the AI coordination

backend, streamlining the workflow from data preparation to model integration (Figure 8).

 4) Lifecycle management: To ensure efficient resource utilisation, this frontend API includes

functionalities for stopping and unregistering metrics that are no longer required.

• The /stop_model_metrics endpoint can halt active metric generation, freeing up resources for

other tasks.

• Similarly, the /unregister_metric endpoint allows the removal of outdated or obsolete metrics,

keeping the monitoring setup clean and efficient.

 This lifecycle management capability ensures that the monitoring system remains lean and

adaptable over time.

A more in-depth view of the workflows followed by this component, including authentication

workflows in Keycloak, integration with Telemetry and the Intelligence Layer, as well as API

workflows, are covered in Annex II.C.

Figure 8. Metric creation with model training

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 28 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3.2.2.2.1 Technical specification

The ICOS Metrics Export API uses the Python prometheus_client library, which provides a powerful

framework for metric generation and management. The API utilises RESTful endpoints, offering a

modular and scalable architecture that supports diverse deployment options.

 The design of the Intelligence frontend is explained in more detail below. The architecture comprises

two major workflows:

- Metric creation via model inference (Figure 7): This focuses on using pre-trained models to

generate new metrics based on telemetry data. It involves fetching data from Grafana or

Prometheus/Thanos, formatting it for model inference, and posting predictions to

Prometheus/Thanos for monitoring.

- Metric creation with model training (Figure 8): This adds a model training step, where Telemetry

data is used to train new models, which are then deployed to generate metrics. Together, these

workflows provide a comprehensive solution for both reactive and predictive monitoring needs.

 These workflows ensure seamless integration of telemetry data, predictive modelling, and metric

generation.

The Intelligence coordination frontend component empowers ICOS with robust metric monitoring,

predictive analytics, and seamless integration into its operational ecosystem

 Deployment alongside ICOS Controller.

 Supports Docker and Helm for scalability.

 Requires environment variables for Grafana, Prometheus or Thanos and Intelligence Layer API

integration.

 Key Features:

 Swagger UI

 Keycloak-based authentication for security.

3.3 Trustworthy AI module

The Trustworthy AI module in ICOS is dedicated to ensuring AI's ethical, responsible, and privacy-

preserving use. Its mission is to uphold the principles of transparency and fairness, as outlined in D4.1,

which emphasises the development of tools to create models that deliver reliable results, protect user

data, and promote ethical standards.

The following subsections delve into the core aspects of this module, highlighting its key components:

 AI explainability through SHAP for interpretability and transparency,

 mechanisms to ensure model confidence and robustness,

 model and data monitoring with drift detection, and

 federated learning to safeguard privacy.

Together, these functionalities aid the Trustworthy AI module on aligning to ICOS’s overarching goals

promoting the responsible adoption of AI.

3.3.1 Functional description

As outlined in deliverable D4.1, the Trustworthy AI module is a key component of the Intelligence

Layer Coordination API. See D4.1 [7] for a high-level functional description of this module.

3.3.2 Technical description

In IT-2, the intelligence Layer has introduced several features to improve AI trustworthiness. This

section is devoted these new features, which are outlined below:

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 29 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

 AI explainability – This is achieved through the library SHAP (SHapley Additive exPlanations), which

provides detailed insights into the factors influencing model decisions, enhancing transparency in AI-

driven processes.

 SHAP values serve as a feature of importance analysis [30] for the given models, offering

meaningful insights into their outputs.

 Model confidence and confidence intervals: A per-sample model score and a matching confidence

interval are provided by the configuration of the model confidence and confidence intervals.

 We have used NumPy and calculated metrics such as the Mean Absolute Error (MAE) to assess

the confidence and uncertainty associated with model predictions.

 This setup guarantees a measurable indicator of the model's prediction accuracy, allowing for a

more thorough comprehension of prediction dependability and promoting well-informed decision-

making, particularly in crucial applications.

 Drift detection and automated model re-training: We have integrated NannyML into the Intelligence

Layer, which enables real-time tracking of data distribution shifts and model performance estimation.

 This can be used for univariate and multivariate drift detection, as well as a triggering system to

identify when models require retraining based on poor performance; thus, improving the robustness

of the models deployed in the registry if this is added to the model pipelines.

 Federated Learning model training, for privacy-preserving and enhancing security by not moving data

out of the nodes.

 This leverages the Flower framework that enables collaborative model training across multiple

decentralised devices or organisations while preserving data privacy.

 Once local models are aggregated into one, this aggregated (global) model becomes part of the AI

coordination backend model registry, and it is made available to be used for inference (as any other

model trained through the Intelligence Layer).

The next four subsections go more in-depth into each of them. Technical specifications of the Software

developed in this module are provided in Annex II.H.

3.3.2.1 Explainable AI

To ensure transparency and reliability in ICOS, we will employ explainable AI techniques to interpret

and monitor the models provided by the Intelligence Layer as described in D4.1. This toolset is aimed

to allow data scientists or users using AI models, to identify and mitigate biases, enhancing the accuracy

and fairness of AI systems.

Figure 9. Summary bar plot highlighting the average importance of top features

This element of the Trustworthy AI module provides visual tools to help users understand how models

arrive at their conclusions.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 30 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

 By demystifying the decision-making process, we aim to increase trust and confidence in the models,

enabling users to make informed decisions. To enhance model interpretability, we have integrated

SHAP (SHapley Additive exPlanations) into the Intelligence Layer's model training pipeline.

 This tool generates visual dashboards that illustrate how the model arrives at its predictions, promoting

transparency and trust. For this purpose, N samples from the inference data are used for SHAP

analysis, allowing the user to customise this parameter. By default, this value is set to 100.

Examples are visualised in Figure 9 and Figure 10.

 Figure 9 shows a bar plot illustrating the average importance of the top features, with SHAP values

ranging from negative (blue) to positive (red), highlighting the model’s output per feature vector. This

shows that lags 1, 2, and 3 are the most significant, while other variables contribute less.

 Figure 10 consists of a waterfall plot depicting the stepwise contribution of E[f(X)] , where SHAP

values are notably high for lags 3 and 2, followed by lag 5.

Figure 10. Waterfall plot showing the stepwise contribution of individual features to a

specific prediction

MLFlow is used to store the SHAP explanations. For this purpose, SHAP explainer is initialised for the

model’s predictions on a subset of the test data, which helps us interpret the model’s output through

SHAP values. It then generates three types of SHAP plots - a waterfall plot, a bar plot, and a heatmap.

The plots are created using the commands:

plot_func(shap_data, show=False)

mlflow.log_figure(figure=fig, artifact_file=file_name)

to log the figures for easy tracking and analysis. Just remember that the MLFlow tag ID should be used

within the same session to keep all artifacts organised in one place.

3.3.2.2 Prediction confidence scores

In IT-2, the AI coordination backend API responses incorporate a confidence score and a confidence

interval alongside the predicted value, providing a more comprehensive assessment of the prediction.

 The confidence score provides this information, indicating how closely the predicted values align with

the true values by looking using in this case the expected Mean Absolute Error (MAE).

 The confidence interval, computed by specifying a certain range (CI – 95% in this development made

in IT-2), creates a mask that determines whether each prediction lies within that range.

 When there is a match within the CI, a flag is set to true; otherwise, it is set to false.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 31 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 11. Confidence intervals in ICOS experiments over an XGBoost model

This enhancement is visually represented in Figure 11, where the shaded region indicates the area

bounded by the upper and lower confidence intervals, and as API call a response body in Figure 12.

Figure 12. Body response with model confidence through the Intelligence API

3.3.2.3 Model monitoring

As AI models in production are susceptible to performance degradation over time, we have integrated a

monitoring system to detect data shifts and model performance degradation, ensuring the trustworthiness

of deployed models.

 This monitoring functionality in the Trustworthy AI module aids on identifying shifts, drifts, and

impacting AI models or their data they receive for training and inference.

 For this, we have integrated NannyML for monitoring and performance estimation.

 When underperformance is detected, the module initiates strategies such as retraining with new

data or model replacement.

 To facilitate this continuous monitoring process, the module collects, reports, and analyses

incoming data, leveraging historical performance metrics stored in the Intelligence coordination

backend model registry.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 32 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

 This enables the module to assess deviations from expected performance and take appropriate

actions.

Figure 13. Historical data (reference) vs data received while the model is in the registry (analysis)

Figure 13 indicates potential shifts marked as red alerts over the performance of an XGBoost model.

 This is achieved by storing a NannyML object ain the model registry along with trained models.

 This object analyses training data predictions by dividing them into time-ordered chunks based on

a specified window size for later comparing the baseline distribution (reference data) with data

received for at inference time (analysis data).

 Drift detection is activated through the data_drifts Intelligence API (backend) call, utilising

statistical measures (Jensen-Shannon divergence [19] in this case) to identify shifts in predictions.

3.3.2.4 Federated learning

Federated Learning was initially introduced in the Trustworthy AI module in D4.1 for privacy-aware

model training.

 The core part of this component is ICOS Federated Learning (ICOS-FL), a customisable and pip-

installable function built during IT-2 on top of the Flower FL framework. ICOS-FL initiates the FL

learning process upon receiving a request from the ICOS applications.

 ICOS-FL focuses on distributed model training and aggregation.

 The current prototype trains an LSTM model to predict key metrics such as CPU usage, memory

usage, and power consumption. This designed to be easily generalised, allowing for the integration

of diverse computational metrics across different environments to facilitate flexible Federated

Learning training cycles. A usage demonstration of this can be found in Annex II.E.3.

 Data is retrieved from the ICOS monitoring pipeline, which relies on a stack consisting of

Scaphandre (for energy usage data), Prometheus (for metric collection), OpenTelemetry, and the

dataClay OTLP (OpenTelemetry Protocol) bridge.

ICOS-FL enables multiple nodes (called clients) to collaboratively train a shared model under the

coordination of a central server (the aggregator).

 Each client trains the model on local data and returns updates (gradients or model weights) to the

server.

 The server aggregates these updates to produce a global model.

This approach enhances privacy because raw data never leaves the clients while achieving an overall

model that benefits from the combined knowledge of all participants.

Key functional aspects include:

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 33 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

 1) Federated Learning Loop: This process repeats for a specified number of rounds (or until a certain

convergence criterion is met).

- The server (ICOS-FL server) coordinates the training rounds by sending an initial model to the

clients. This task is planned to be initiated from ICOS Intelligence in the Controller suite. The

ICOS-FL server is initiated through the dataClay OTLP bridge, thus, all steps below and model

aggregation activities will be offloaded as AI training tasks.

 This is integration piece to aggregate models through dataClay is expected to be finished by the

ICOS final release.

- Each client trains locally using its assigned data (metrics from dataClay).

- The server aggregates the model updates to form a new global model by following a specified

aggregation policy—FedAvg in the prototype, or alternatively FedProx, FedSGD, and others.

 2) LSTM Model for Time Series Prediction:

- The platform currently supports an LSTM model that predicts CPU usage, memory usage, and

power consumption.

- Continuous retraining is supported, allowing the model to be periodically retrained as new data

arrive.

 3) Data Ingestion:

- Real-time metrics are collected by Prometheus (which fetches them from Scaphandre) and exposed

through the OpenTelemetry collector.

- The dataClay OTLP bridge transforms those metrics into dataClay objects, effectively serialising

them into DataFrames for the training process.

 4) Model Export and Deployment:

- The resulting model is exported in BentoML [25]format, making it portable for inference through

the Intelligence API (backend) or further use in downstream applications.

The ICOS-FL server is planned to be triggered under the control/coordination of a Controller through

the OTLP dataClay bridge.

 The intelligence backend will initiate federated learning training tasks outside the Controller (e.g.

aggregation), determining how many nodes should participate in the training process.

 The ICOS-FL client takes advantage of data available in the local dataClay instance (through the

OTLP dataClay bridge, see Sections 2.2.2 and 2.2.3).

 Local training is then offloaded to this dataClay instance guaranteeing efficient training without

unnecessary data transfers.

 Once the training job completes, the final global model is stored and made available to the rest of

the ICOS environment.

The next subsections delve into the technical details of how ICOS-FL and its supporting services

(Prometheus, OpenTelemetry, the dataClay OTLP bridge, etc.) work together to provide a federated

learning solution for system metrics.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 34 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3.3.2.4.1 Prototype architecture

Figure 14 illustrates the prototype architecture.

Figure 14. FL prototype architecture

It contains the following elements:

 Scaphandre: Runs as a container to collect power consumption metrics.

 Prometheus: Gathers metrics (including those from Scaphandre) and provides an endpoint for

scraping these metrics.

 OpenTelemetry Collector: Receives metrics from Prometheus (and potentially other sources),

packaging them in OpenTelemetry format.

 dataClay OTLP Bridge: Connects the OpenTelemetry stream to dataClay. Metrics are batched or

streamed, then serialised into dataClay objects (typically transformed into a pandas DataFrame).

 ICOS Federated Learning (ICOS-FL): Composed of two main pip-installable packages:

• icos_fl_server: Coordinates the FL process, aggregates client updates, and stores/export the

final model.

• icos_fl_client: Performs local training rounds and sends model updates back to the server.

Annexes II.E.1 and II.E.2 provide, respectively, sequence diagrams for this process and a more detailed

description of each of the FL process components from Figure 14.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 35 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3.4 AI Analytics

The AI Analytics framework was introduced in D4.1 as a toolkit for building and deploying machine

learning models. The first version of the model, as presented in D4.1, aggregates Intelligent energy-

aware task offloading, load time series forecasting, forecasting upcoming load anomalies, and CPU

utilisation forecasting to improve workload distribution. This module is designed to be efficient and

scalable, making it ideal for use in large-scale projects.

Building upon the existing framework, IT-2 introduces several key enhancements:

 AI models training enhancements

 Improved energy forecasting and support for multivariate and multioutput metrics forecasting.

 MLOps capabilities extended for enhanced model tracking and management.

 Model compression techniques implemented to minimise model size and reduce computation.

3.4.1 AI Models

This subsection presents models that come pre-trained as part of the Intelligence Layer model registry.

Most of them are also trainable through the AI Analytics module and using the Intelligence layer

coordination APIs. These models focus on the following prediction tasks:

3.4.1.1 Intelligence for resource-allocation

D4.1– “Data management, Intelligence and Security Layers (IT-1) introduced basic functionality for the

three types of models below.

 Anomaly detection: This element of AI Analytics is focused on classifying anomalies in the load-

balancing change patterns. This remains the same as in D4.1.

 Load balancing and energy forecasting: This model is intended to predict future load balancing

considering energy consumption. In IT-2 there have been changes and formal experiments.

 Their numerical results and testing using the Decentralised Computation Offloading scheme

(DECOFFEE) for Energy Efficiency across ICOS Layers [11] are presented in Annex II.F.

 Its training process is intended to be performed through the federated learning process presented

in Section 3.3.2.4 to reduce data movement.

 Metrics forecasting: In IT-1, a training and inference pipeline was presented to predict CPU and RAM

utilisation on 5-minute intervals using univariate models. This was presented as the first integration

between the Intelligence Layer modules and data management.

 In IT-2 there have been changes to improve AI models and pipelines provided as part of the

component. These are covered in Annex II.G.

 The version of this component now employs PyTorch LSTMs to forecast CPU and memory usage,

supporting both univariate and multivariate (simultaneous CPU/memory) approaches.

3.4.1.2 Intelligence for security

At the time of writing this report (M30), experiments are going on for a fourth and last model to be

trainable through the AI Analytics module using Tetragon [36] logs to identify security issues.

 This piece of work, which integrates Security and Intelligence Layers is covered in Section 4.8 and

will be reviewed in the ICOS Final release (D5.3) [8].

As introduced at the start of Section 3, this is not the only piece of integration between Security and

Intelligence.

 Deliverable D2.4 already covered the integration between LOMOS for anomaly detection to be used

through the Intelligence Layer Coordination backend API.

 LOMOS is covered further in Section 4.5.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 36 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3.4.2 AIOps system

IT-1 provided AIOps by providing the Intelligence backend API for AI as a service, allowing model

training and inference on demand and connected to the Intelligence Layer model registry allowing

continual learning through model reuse [18] and fine-tuning.

In IT-2, Intelligence Layer leverages MLFlow [22], an open-source platform, to facilitate the

development and deployment of new AI models.

 This provides capabilities for tracking projects, models, and experimental parameters, enabling users

to conduct various experiments and effectively monitor their outcomes through detailed logs. See its

user interface in Figure 15.

Figure 15. MLFlow UI showing experiments of each model training request

3.4.2.1 Functional description

IT-1 integrated BentoML [25] as an initial piece of AIOps for the Intelligence Layer with the capability

to track model metadata, performance metrics, and data split information during each training iteration.

In IT-2, this framework has been enhanced by

 incorporating model explainability techniques (see Trustworthy AI module) and

 by capturing learning curves for neural network models (e.g., PyTorch) throughout the training and

evaluation phases.

These additions provide a more comprehensive and visually informative representation of model

performance.

3.4.2.2 Technical description

MLFlow can be divided into multiple components. The two most relevant to this integration piece are:

 1) MLruns: These are directories generated upon MLFlow initialisation at the commencement of

model training.

 An mlrun houses essential metadata pertaining to each training experiment, including model

metrics, descriptions, and dataset information.

 2) MLFlow UI: User interface that integrates data visualisation to facilitate the exploration of

experiments related to each model training run.

 This tool provides a visual representation of the experiments, along with the associated model

parameters captured during the training process.

During each model training iteration, the mlflow.start_run() function is invoked from the Intelligence

backend to initiate an MLFlow experiment and create an 'mlruns' folder to log experimental data.

Subsequently, metadata information is logged such as

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 37 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

 performance metrics (mlflow.log_metrics(performance_metrics)),

 hyperparameters (mlflow.log_params(datasplit_information)),

 and model tags (mlflow.set_tag("bentoml.model", bento_model.tag)).

For DL frameworks like PyTorch [28] and TensorFlow [29], the Intelligence backend in IT-2 can log

loss curves for each epoch, enabling a detailed analysis of model performance as illustrated in Figure

16.

Furthermore, IT-2 incorporates a storage optimisation mechanism by limiting the number of

experiments tracked for each run. This limit is configurable by the administrator within the Intelligence

Layer container configuration file, with a default value of 10. To prevent excessive storage consumption,

the system automatically deletes older experiments when the configured limit is reached.

Figure 16. Loss curves representing model’s training loss reducing with each epoch

3.4.3 Model compression

The Intelligence Layer in IT-2 introduces model compression as a set of techniques designed to reduce

computational overhead while maintaining predictive effectiveness.

3.4.3.1 Functional description

 The aim here is to enhance the operational efficiency of AI models in the continuum by:

 reducing model size (MB),

 optimising memory consumption (MB) and

 accelerating inference times.

 The methods implemented address scalability challenges in resource-constrained edge and specific

use cases where low inferencing times are required. This addresses the ICOS requirement CM_FR_14

– model optimisation techniques. See this requirement in Annex II.A.

3.4.3.2 Technical description

Two core techniques for model compression have been implemented and inbuilt into the metrics

forecasting model training pipeline in the Intelligence Layer coordination backend API:

 1) Knowledge distillation: This compression mechanism performs a knowledge transfer to a smaller

architecture.

 Distilled model trained using an RNN from an initial LSTM model (baseline).

 Model size reduction of ~ 70x while obtaining comparable performance metrics.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 38 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

 These results can be observed in Figure 17. Similarly, Figure 18 depicts the teacher, student and

distilled model performance over time.

 The distilled model generalised better to CPU and Memory time series in some experiments.

Figure 17. Distilled model results vs teacher and student performance

Figure 18. CPU (left) and RAM (right) preds for teacher, student, and distilled models

 2) Dynamic quantisation: This model compression method is based on reducing the precision of

several model parameters.

 Weights and activations of specific model layers are converted from floating points 32 (FP32) to

integer 8 (INT8).

 This procedure has been shown to improve the model size by 3x, while also reducing the inference

time This is shown in Figure 19 and Figure 20. We can see that our experiments reduced the CPU

usage from 70.356 KB to just 21.68 KB.

Figure 19. Quantisation results in experiments for CPU metrics forecasting

Figure 20. CPU (left) and RAM (right) preds for the quantised vs non-quant. models and ground truth

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 39 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Model pruning has been discarded as a compression method from IT-2 after initial experiments not

contributing to improving model efficiency while maintaining their accuracy. Technical specifications

for model compression are covered in Annex II.H.2.

3.5 Data Processing

The Intelligence Layer encompasses a module dedicated to data preparation, transformation, and

read/write operations.

 This module offers libraries and frameworks for transforming raw data extracted from the data

management component (dataClay [21]) into a suitable format for model training.

 It also facilitates distributed workload by offloading computational tasks such as intensive model

training to other ICOS nodes when a request is made to the Intelligence Layer.

In IT-1, basic data processing was implemented using raw dataClay data (see deliverable D4.1) along

with task offloading. IT-2 builds upon this foundation by enhancing the data-cleaning process and

introducing support for multivariate models.

3.5.1 Functional description

This module serves for three purposes:

 Data access through data management: Extracting raw training dataset from dataClay by connecting

to its client and reading the dataset as an alias that is used as unique identifier in the dataClay server.

 Data transformation and pipelining: Once the data is accessed, the data processing module performs

further operations over such dataset to clean it and transform it for modelling.

 Model training offloading: since the dataClay client is part of the Data Processing module, AI

offloading is actioned by the Intelligence backend interacting with this module and AI Analytics.

3.5.1.1 Fitting into the ICOS architecture

The data processing module is part of the Intelligence coordination API, which is deployed at the

controller; a more detailed description of the architecture is already provided in deliverable D4.1 [7]

3.5.2 Technical description

This module as presented in IT-1 performs the following actions.

 1) the raw dataset obtained from the data management component undergoes preprocessing tailored

to the specific AI model requirements:

 univariate models demand tabular data where feature vectors should be structured as a set of single

value lags or timesteps, while

 multivariate models require feature vectors including values for multiple metrics.

 2) Subsequently, the pre-processed dataset undergoes further processing steps as outlined in the

sequence diagram within Section 3.1.2.2 of deliverable D4.1 [7].

 3) Finally, upon request, the model training task can be offloaded to another ICOS node using

dataClay, as detailed in the sequence diagram within Section 4.12 of deliverable D2.4 [6].

IT-2 introduces several enhancements, including the integration of pipelines and code optimisation over

the Intelligence AI training offloading presented in D2.4. This optimises the source code, particularly

for scenarios where local model training is preferred, with the aim to improve efficiency and reduce

resource consumption by avoiding the overhead associated with offloading operations when not

required.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 40 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3.5.2.1 Prototype architecture

The interaction of the data processing module with the Intelligence Layer coordination API and the data

management component is illustrated in Figure 4, Section 3.1.

 A detailed architectural description was presented in the definition of the Intelligence coordination

frontend in Section 3.2.2.2; this included an overview of the data flow, illustrating how telemetry data

is retrieved from its source, subsequently transferred to dataClay, and ultimately utilised by the

Intelligence Layer coordination backend for further processing and analysis.

3.5.2.2 Description of components

The data processing module comprises a suite of components, including data ingestion, transformation,

splitting, model training (with offloading capabilities), evaluation, and deployment. These components

have already been described in deliverable D4.1.

Given that these components are already embedded within the AI pipelines used in AI Analytics, a

separate “Technical specification"” section is not required.

3.6 AI Models and Data Repository

The fifth module of the Intelligence Layer is the “AI Models and Data Repository”. This project is

openly accessible in Hugging Face (https://huggingface.co/ICOS-AI) and will be delivered as part of

D4.3 – “ICOS Dataset and AI models marketplace”. This section introduces the repository and its

components.

3.6.1 Functional description

A preliminary view by M30 of ICOS is shown in Figure 21.

Figure 21. Preliminary view of the online ICOS AI Models and Data Repository

https://huggingface.co/ICOS-AI

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 41 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 21 shows example repositories containing datasets and models used by ICOS Intelligence. This

module, not covered in D4.1, is described for the first time in the following subsections. Extra technical

documentation will be given in the form of an appendix to D4.3- “ICOS Dataset and AI models

marketplace”.

3.6.1.1 Fitting into the ICOS architecture

The AI models and Dataset Repository, formerly known as “AI Models Marketplace”, in the project’s

grant agreement [1], has been previously described as “A collection of pre-trained analytics and ML

models to be reused, updated, and refined to foster the application of new AI techniques in the ICOS

meta-OS”. While the described functionality is provided at the Controller level by the Intelligence model

registry, the online ICOS AI marketplace is online and reachable not only through the Intelligence Layer

but also through a web interface.

As covered in “Section 3.3.2.5 AI Models Repository” in D2.4 – “ICOS Architectural Design (IT-2)”,

this cloud-based repository differs from model registries in the controller.

 Model registries have a version of the current models running on the device.

 The AI models’ repository aims to contain versions of prior successful models for meta-OS-related

and user layers.

See both represented in Figure 22. Model registries appear inside the controller, while the AI repository

is conceptually outside ICOS.

Figure 22. Fragment of Figure 7 in D4.1. AI repository as online catalogue external to ICOS elements

3.6.2 Technical description

The AI models repository module, called AI marketplace or ICOS marketplace in the project proposal,

is made of:

1. model and data repository available online and

2. a client in the Intelligence coordination module (developed using Python 3.10) to allow pulling

and pushing models and datasets between ICOS intelligence and the repository.

Both elements are described in more detail in the next subsections.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 42 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3.6.2.1 Prototype architecture

This component is made of two different elements: i) repositories and ii) Intelligence Layer’s client.

These are presented in the next two subsections.

3.6.2.1.1 Model and data repository

This is a repository containing:

1. models developed using ICOS Intelligence and AI Support functions that were successfully

deployed and validated, and thus shared in the repository, plus

2. sample datasets used to train these models as well as

3. data gathered using ICOS.

 Example models and data are:

 Metrics forecasting models: CPU, Energy and security related models part of the registry

 Use cases related models: predictive maintenance model and energy management model

 Telemetry metrics data: sample data captured in the ICOS testbeds used to train metric forecasting

models.

 Open energy data: energy data captured using Scaphandre [31] and utilised for energy forecasting

models (e.g. DECOFFEE) in ICOS. See D4.1 Data management, Intelligence and Security Layers IT-

1.

Each model and dataset will have their own repository. Note that models and datasets have different

sections in the ICOS “AI Models and Data Repository”; see Figure 21. Such repositories will use model

cards and dataset cards respectively to list relevant information of models and data.

 Model cards8 give details regarding trained AI models stored in the repository. They cover details

about the model's building process, underlying assumptions made during its creation, potential

variations in its performance as well as its expected results [13]. Metadata referring to model

information such as license, language, library, datasets, metrics, and eval_results can also be provided

as a YAML file.

 Data cards9 are the common format used in Hugging Face for dataset documentation. They work as

model cards above, helping the community to understand the contents of the dataset and give a context

on how this should be used. Dataset metadata can also be added in the form of a YAML file, allowing

users to search for them.

Information of models and data will be represented using open model standards and data model schemas

to optimise their search and reusability. The set of model and dataset fields to cover in their cards will

be extracted from relevant literature reviews that analyse 32,111 model cards [14] and 7,433 datasets

respectively [15]. For data cards, common metadata standards and common fields contained by semantic

web ontologies (e.g., information contained by the RDF vocabulary DCAT10) will also be considered.

The complete list of model and data information contained in the “AI Models and Data Repository” will

be delivered in the appendix to D4.3 – “ICOS Dataset and AI models marketplace”.

3.6.2.1.2 AI repository client

The AI Models and Data Repository is made available to the AI Coordination Layer through Intelligence

API functions that allow pulling models from the repository into the model registry and pulling data into

the data processing module as well as the inverse process pushing models and data into it.

This client allows seamless interactions between the online ICOS AI “Model and Data Repository” and

the ICOS Intelligence Layer. It is actioned by the AI coordination module both for model and data pull

and push actions. Detailed documentation as well as configuration steps for the integration between

8 Model cards: https://huggingface.co/docs/hub/en/model-cards
9 Data cards: https://huggingface.co/docs/hub/en/datasets-cards
10 Data Catalog Vocabulary (DCAT) - Version 3: https://www.w3.org/TR/vocab-dcat-3/

https://huggingface.co/docs/hub/en/model-cards
https://huggingface.co/docs/hub/en/datasets-cards
https://www.w3.org/TR/vocab-dcat-3/

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 43 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

ICOS Intelligence and the AI Models and Data Repository will be delivered in an Annex document part

of D4.3 – “ICOS Dataset and AI Models Marketplace”.

3.6.2.2 Description of components

The Intelligence Layer uses both push and pull mechanisms to synchronise the ICOS AI and Data

Models repository and the Intelligence Layer. This synchronisation is a choice made by the ICOS

Controller administrator or relevant technical users able to make decisions concerning the models

running in ICOS. While push and pull mechanisms will be covered in further detail in D4.3 together

with a "Technical specification" section, they are initially introduced as follows.

Push mechanisms

 Models: models should be first stored in the Intelligence model registry. The model’s name and

version may be specified in an API call in the form, defining model card parameters as well as model

metadata.

 Datasets: once the data processing module loads a dataset, its dataset alias can be specified to the

Intelligence API, which is part of AI coordination, to be pushed into the AI Models and Data

Repository with data-card-related information and metadata associated. As for models, developing an

API call will be considered for this operation. The user configured in the repository client should have

special permissions to push into the AI Models and Data repository.

Pull mechanisms

This is expected to follow the inverse mechanism described above. Thus:

 Models will be loaded into the Intelligence model registry. For this, BentoML and Hugging Face

integration11 to load models will be explored.

 Datasets will be downloaded and assigned an alias to be used by Intelligence.

The Intelligence Layer will be able to pull datasets to train models with data used by the ICOS

community. Members of the ICOS-AI organisation in Hugging Face will also be able to push and share

new datasets and models with the Edge-to-cloud Continuum community. The process to submit models

and datasets to the repository will be described as part of D4.3 – “ICOS Dataset and AI Models

Marketplace”.

11BentoML-HF 1: https://docs.bentoml.com/en/latest/build-with-bentoml/model-loading-and-management.html

https://docs.bentoml.com/en/latest/build-with-bentoml/model-loading-and-management.html

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 44 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3.7 Limitations and future work

A manner to review the work completed by M30 and its limitations is by looking at the successful

completion of the system requirements (see Annex II.A). Additionally, D2.2 [2] defined a set of System

Use Cases (SUC) for Intelligence. They are listed below.

 SUC_AI_1 – Manage Model

- This was initially achieved in IT-1 through the Intelligence coordination backend, its API and its

model registry.

 SUC_AI_2 – Train Model

- Achieved in IT-1 to train univariate models for utilisation metrics.

- This has been improved in IT-2 for multivariate modelling.

 SUC_AI_3 – Clean and Pre-Process Data

- This is part of the data and model pipelines developed through IT-1 and IT-2, built in the

Intelligence Layer.

 SUC_AI_4 – Validate Model

- The AIOps framework integration (MLFlow) into the Intelligence Layer performed in IT-2 allows

application developers to analyse model results and experiment using the Intelligence Layer

environment, for a later push to the model registry at the Controller.

 SUC_AI_5 – Deploy Model

- Developers or admins with access to the controller can deploy models in the model registry

provided in IT-1.

- In IT-2, model training functionality has been added to the ICOS Shell interacting with the

Intelligence frontend. Models trained through this process are deployed into the Intelligence model

registry through an automated process (see Section 3.2).

 SUC_AI_6 – Inference

- IT-1 provided model inference functionality as part of the Intelligence Layer backend.

- IT-2 provides ICOS Shell access to model inference using the Intelligence frontend (Intelligence

Layer Coordination module).

A limitation in the work performed by M30 is that the intelligence coordination frontend does not

expose all Intelligence functionalities listed for the backend (see Section 3.2). This will be further

reviewed in the ICOS Final release (D5.3) [8]. Extra functionalities in the frontend may be left for

future updates during exploitation.

 AI model-related SUCs (SUC_AI_7-10) – Classify Nodes, Detect and Classify Anomalies, Detect and

Predict policies and requirements violations

- AI models in the Intelligence Layer predict anomalies and future metric values from IT-1.

- During IT-2, a workflow was co-designed between Intelligence Layer developing partners and the

MetaOS module leaders to receive and self-identify new system metrics to be predicted and enable

MetaOS modules to read such predictions from Telemetry. Thus, MetaOS modules (e.g.,

aggregator, and policy manager) read these forecasts and fetch them to their decision-making

numerical and classification models for matchmaking, finding anomalies, and violations.

- The AI Analytics module provides functionality to deploy and use models for tasks such as: energy

consumption forecasting, load balancing, anomaly detection and utilisation metrics like CPU and

RAM.

 Pre-trained models for energy consumption, anomaly detection, metrics forecasting and load

balancing are packaged in the Intelligence Layer, to tackle the cold-start problem [17] right after

the ICOS setup in a given infrastructure.

 The training functionality provided is metric-agnostic. Therefore, the Intelligence Layer can be

personalised depending on the infrastructure needs. Infrastructure providers and ICOS users can

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 45 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

picture this model training and update functionality as Intelligence regular updates to keep it up

to date with ongoing changes in the underlying infrastructure and workloads.

In regard to energy forecasting, this is achieved through the DECOFFEE framework, which has been

designed to be trained through a federated learning process to avoid data movement.

 The DECOFFEE framework, although developed and tested as presented in Section 3.4.1.1 and Annex

II.F, it cannot be fully integrated in the ICOS testing infrastructure due to the lack of heavy task traffic

flows. This is attributed to the fact that DECOFFEE shows significant advantages in task execution

latency and load balancing under the arrival of multiple tasks in the ICOS agents/nodes. Thus,

although DECOFFEE is delivered and is operable in the frame of ICOS, we highlight the limitations

of its full integration within ICOS Testbeds.

 In the ICOS final release (D5.3) [8], the intelligence API will incorporate an option for FL training

inside the training call which will delegate the triggering of the FL-server to dataClay. This triggering

option will be the first step to initialise the FL training process. Regarding FL aggregation, due to late

meetings of an AI-MetaOS taskforce setup in December 2024, it was agreed -at the architectural level-

with other ICOS partners to offload model aggregation through dataClay as any other AI training

workloads. This piece of work aims to offload model aggregation conceptually as any other model

training task using the Data Management component.

Finally, at the deployment side, the Intelligence Layer container, while boasting extensive support for

various libraries, faces challenges during deployment at the controller stage that require some

adjustments.

 One of these issues is a potential duplication of libraries between the Intelligence Layer containers,

that live at the ICOS Controller, and dataClay containers that are deployed in other nodes of the ICOS

infrastructure. This duplication of libraries has a high storage footprint (~ GBs).

This issue can be alleviated by devising a mechanism to store large libraries such as PyTorch or

TensorFlow only at the dataClay containers so that during training offloading all workloads are diverted

to the dataClay container and the intelligence container only receives the results or output of the training.

However, this would make the Intelligence Layer dependant on dataClay containers, which may present

other design conflicts due to the Data Management limitations presented in Section 2.4. While in M30

of the project, this seems out of scope in ICOS, any update on this integration task would be reviewed

in D5.3 – “Third ICOS Release: Complete ICOS version” [8].

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 46 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

4 Security Layer

This section presents the progress regarding development and implementation of Security Layer

modules and components from IT-1 as presented in D4.1 to IT-2 as presented in this deliverable. It is

structured as follows: we present the final (IT-2) design of Security Layer in Subsection 4.1, progress

regarding the Security Layer Coordination API in Subsection 4.2, the Security Scan in Subsection 4.3,

the Identity and Access Management module in Subsection 4.4 and the new development of IT-2

versions of Anomaly detection module in Subsection 4.5, the Audit module in Subsection 4.6 and the

Trust functionality in Subsection 4.7.

Limitations and future work are documented in Subsection 4.8. Finally, we document licensing and

instructions to download and set up the Software in Annex III.C.

4.1 Fitting into the ICOS architecture

This subsection presents the final (IT-2) design of Security Layer modules, components and

functionalities (see Figure 23):

1. The Security Layer Coordination module is located in the ICOS Controller and communicates

with the Security Scan and the Telemetry Controller from the Meta-kernel layer.

2. The Security Scan is composed of server and agents’ components. The agents are located on the

ICOS nodes and communicate information about the detected anomalies to the server, located

in the ICOS Controller. The server is integrated with the Security Coordination module API that

exposes scan results in the form of security metrics to the Telemetry Controller.

3. The IAM is part of the ICOS Core suite and is deployed on a separate cluster. It provides API

to ICOS Shell and ICOS services in ICOS Controller, Agent and Edge for authentication and

authorisation of ICOS users and ICOS services.

4. The Anomaly detection module is part of the Security layer but since it is also an AI tool, it was

a design decision to integrate it with the Intelligence Coordination Module API. The latter acts

as an access point to the Intelligence Layer, verifying users’ and services’ permissions to access

this and other modules in the Layer. The “engine” of the Anomaly detection module, LOMOS,

is deployed outside of ICOS in an isolated environment where it has direct access to hardware

needed to run the training (GPUs). LOMOS has a secure connection through VPN to the

Telemetry Controller to query necessary data (logs) for training and inference. As LOMOS is

in an isolated environment, we have developed a LOMOS API-2 (REST API) that enables to

query LOMOS for the most useful results (e.g., top 10 anomalies, anomalies in a certain period).

LOMOS API-2 is located at the ICOS Controller.

5. The Audit component is packaged as a unified helm chart that wraps each described component

below. For the first layer of auditing Trivy [35] is deployed on the master of each edge

infrastructure to analyse any application manifest and containers which are about to be

deployed. Tetragon [36] runs on each participating ICOS node as an Audit agent and all event

logs are collected centrally to the Tetragon master node (Audit server), also located on the ICOS

node, before they are forwarded to the Telemetry Controller in the ICOS Controller using

Prometheus exporter12.

6. Trust is a system-wide functionality for guaranteeing that ICOS modules and components in the

ICOS Controller and ICOS agent are what they claim they are and, in parallel, their

communication is encrypted (mTLS). Also, ICOS users access the ICOS system through trusted

and secure communication.

12 https://github.com/prometheus/node_exporter

https://github.com/prometheus/node_exporter

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 47 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 23. Security layer modules and functionalities in the ICOS architecture

4.2 Security layer coordination module

This section provides the updated functional and technical description of the Security Layer

Coordination Module API from D4.1 [7].

4.2.1 Functional description

The updated version (IT-2) retains the functionality of acting as the reverse proxy for the inbound traffic,

primarily to forward requests from the Telemetry for the security scans performed by the Security Scan

module.

The functionality of forward proxy is deprecated. In the development since IT-1, the only Security Layer

module that now communicates through the Security Layer Coordination Module API is the Security

Scan. In this case the Security Coordination API acts as a reverse proxy. The Audit module

communicates directly with the Telemetry and the Anomaly detection module communicates with the

Intelligence Coordination module API. Other modules in the Security Layer were removed in the final

ICOS architecture and their functionalities have been implemented as part of the Meta-kernel layer.

By acting as the reverse proxy for the Security Scan, the Security Layer Coordination module IT-2

contributes to meeting the following ICOS functional requirements from the D2.3 (see Table 12 in

Annex III.A).

4.2.2 Technical description

The Security Layer Coordination module consists of multiple backend services joined together in a

single Docker container. The IT-2 implements the reverse proxy functionality and aggregation of

Security Scan results into security metrics consumed by Prometheus [24]. It is implemented using

Python and FastAPI framework following OpenAPI specifications.

Time scheduling and CRON jobs were not implemented as there is no ICOS service that would need

them.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 48 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

The module is integrated with the Identity and Access management for checking the identity and

permissions of users (e.g. other ICOS modules) trying to access the Security Scan module.

The module is distributed as a part of the ICOS Controller suite.

The API documentation in the form of Swagger UI is available here: http://10.160.3.20:31328/docs

Description of components:

 Reverse-Proxy API (from IT-1): Serves as a gateway for the Security Layer’s incoming

traffic/request.

 Aggregator of scan results (in IT-2): This component aggregates results from different security

scans and provides aggregated results in the form of security metrics to Telemetry.

 Credentials & JWT management: A component that oversees handling API/service credentials and

issuing JWT tokens for communication with modules inside the Security Layer (Security Scan)

with the aim to achieve Zero-trust architecture.

4.3 Security Scan

This section provides the updated functional and technical description of the Security Scan module from

D4.1 [7].

4.3.1 Functional description

In the updated, IT-2, version the Security Scan module is delegated to actively check for security issues

on the ICOS nodes and report these issues to the Telemetry component and to the ICOS user as well as

to check the security of deployed ICOS modules and components.

As in IT-1, the Security Scan module integrates the Wazuh security platform [41] to detect

vulnerabilities (CVE), misconfigurations (CIS benchmark) and malware on the ICOS nodes. For

checking the ICOS modules and components, in IT-2 we use Trivy [35] - a container image scanner that

scans images for vulnerabilities (CVE), IaC issues and misconfigurations and SBOM (host OS packages

and software dependencies). It is integrated in the ICOS CI/CD as a security check all ICOS services

must pass before their code is published on the ICOS developer repository13.

With the Wazuh and Trivy tools, the Security Scan module contributes to meeting the following ICOS

functional requirements from the D2.3 [1] (see Table 12 in Annex III.A).

4.3.2 Technical description

There is no major change regarding Wazuh setup from IT-1. The only difference in IT-2 is that the

Wazuh server is now containerised and deployed as part of the ICOS Controller suite.

The Wazuh agents still need to be manually installed on the ICOS node (VM or barebone). The

documentation is provided here:

 https://www.icos-project.eu/docs/Administration/Computational%20Resources/wazuh_agent/

Trivy is implemented as a job in ICOS CI/CD.

Regarding more detailed description of components, prototype architecture and technical specifications,

there is no change since D4.1 [7].

13 https://production.eng.it/gitlab

http://10.160.3.20:31328/docs
https://www.icos-project.eu/docs/Administration/Computational%20Resources/wazuh_agent/
https://production.eng.it/gitlab

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 49 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

4.4 Identity and Access Management

As provided in the deliverable D4.1 [7] the Identity and Access Management (IAM) module is a key

component of the ICOS architecture, responsible for ensuring that authorised individuals have

appropriate access to system resources. In the context of ICOS, these individuals are either users who

interact with the ICOS MetaOS (including Application Integrators and Infrastructure Providers, as

defined in D2.2 [2]) or other services (part of ICOS or external). The resources to be protected are the

ICOS services, which include components and modules that provide system functionalities, such as the

Job Manager, Telemetry, and Intelligence Layer.

4.4.1 Functional description

The IAM module is part of the Security Layer providing its functionalities to ICOS services at all levels

of the continuum (Controller, Agent and Edge). It has three keys’ functions (as provided in the

deliverable D4.1 [7]):

 Management of Identities permissions.

 Authentication of users.

 Authorisation of requests.

In the IT-2, the implementation focused on:

 Implementing the authorisation mechanism and providing guidelines for developers to integrate it into

their ICOS services.

 Automating the deployment and management of OAuth2 clients, permissions, and users in a

declarative manner (including a script for creating users and clients).

With the authentication and authorisation functionalities, IAM contributes to meeting the following

ICOS functional requirements from the D2.3 [1] (see Table 13 in Annex III.A).

4.4.2 Technical description

The IAM system uses Keycloak, an open-source IAM software14. This solution supports OIDC [32] and

OAuth 2.0 protocols [33] and is released under the Apache 2.0 license. The ICOS IAM API is also based

on the Keycloak API.

In IT-2, a script has been developed to automate the creation and management of Keycloak

environments. This script simplifies provisioning by reading configurations from two YAML files

(Figure 51 and Figure 52), enabling seamless setup and updates of Keycloak realms, users, roles,

controllers, and agents.

The entire process is implemented in Python (v. 3.12.6). It starts with a YAML input file and outputs a

YAML file at the end. The Keycloak Admin API is used for server interaction, while a YAML parser

handles the configuration.

Here are more detailed steps, as outlined in the workflow shown in Figure 24:

1. Reads configuration from both static (static_values.yaml) and dynamic

(dynamic_values.yaml) files.

2. Connects to Keycloak and performs the following operations:

a. Creates realms, users, roles, controllers, and agents.

b. Updates Keycloak to reflect changes from dynamic_values.yaml.

c. Removes deleted configurations from Keycloak.

3. Generates updated YAML files after processing.

14 https://www.keycloak.org/

https://www.python.org/downloads/release/python-3126/
https://www.python.org/downloads/release/python-3126/
https://www.keycloak.org/

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 50 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 24. Sequence diagram for the Keycloak automation script

Annex III.B shows examples of configuration files:

 dynamic_values.yaml (Figure 51): Contains modifiable configurations like server details, realm

information, and user data.

 static_values.yaml (Figure 52): Contains stable configurations like realm roles, controller clients, and

core clients.

4.5 Anomaly detection

This section provides the functional and technical description of the Anomaly detection in ICOS.

4.5.1 Functional description

The Anomaly detection module is implemented using an AI-based log monitoring solution - LOMOS.

Traditional log monitoring solutions are limited to rule-based (manual) analysis of time series data. In

contrast, LOMOS makes use of state-of-the-art Natural Language Processing (NLP) architectures to

model log streams and capture their normal operating conditions. Concretely, it uses deep learning

methods, such as Mask Language Modelling, common in self-supervised NLP, and Hypersphere

Volume Minimisation, mapping normal samples to their representations. With these, LOMOS calculates

anomaly scores for sequences of log templates, using NLP models for the IDs linked to these templates.

Without manual pre-processing of raw logs from unstructured data, LOMOS aims to identify patterns

in logs and identify anomalous behaviour.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 51 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Thus, LOMOS monitoring system does not depend on any manually defined rules or human intervention

but relies on that behavioural model to automatically detect deviations that would represent any kind of

abnormal situations, including potential security threats.

The anomaly detection module contributes to meeting the following ICOS functional requirements from

the D2.3 [1] (see Table 14 in Annex III.A).

4.5.2 Technical description

The core of the system is LOMOS, which comprises the LOMOS Controller, LOMOS Parsing, and

LOMOS Anomaly Detection modules developed in Python. See Figure 25.

Figure 25. LOMOS architecture

The architecture of LOMOS can be described as follows:

 The LOMOS Controller is the central component that coordinates the system's operations. It can

initiate log parsing and anomaly detection tasks on Celery CPU and GPU workers. The LOMOS

Controller provides a REST API through which it receives requests for training or inference tasks. It

is also used to monitor and manage periodic tasks.

 The Celery services are another crucial component of the system. Celery is employed to distribute

learning and inference tasks among CPU and GPU workers. It encompasses:

- a web dashboard named Celery Flower,

- a scheduler called Celery Beat,

- and Redis, which facilitates communication between the components. Both Celery and Redis are

free and open source.

 The third component is focused on experiment tracking and model registry, comprising three free

and open source services:

- Postgres DB for storing all tabular data,

- a File Transfer Protocol (FTP) server for storing artifacts, and MLFlow as a dashboard and

- Representational State Transfer (REST) API access point.

On top of this, MLFlow [22] provides an official Python API, allowing developers to easily integrate it

into systems. It is used to log training parameters and metrics such as loss and other evaluation metrics.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 52 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Artifacts like weights of the trained model or tabular and visual outputs can also be stored. All values

and artifacts can be retrieved using the experiment's unique identifier.

Logs are stored in the Log data storage section, within Elasticsearch indices.

 Kibana [42] is deployed for managing and exploring Elasticsearch.

 Elasticsearch [43] is well-suited for handling log data, as it can store documents in JavaScript Object

Notation (JSON) format. Elasticsearch supports automatic index rollover based on time or index size.

The data can be moved through different phases and later stored in a format optimised for low storage

requirements, rather than for query speed. Old data can also be automatically deleted to make space for

new logs. There is an official Python client for Elasticsearch. The original Elastic is no longer free for

commercial use, so we use the alternative OpenSearch, which is licensed under Apache 2.0 and is

therefore free and open source.

Figure 26. Sample LOMOS anomaly score

The final part is Dashboard. The actual dashboard is developed in Grafana [23], which is a free and

opensource analytics and interactive visualisation web application. By default, it does not support input

forms. During ICOS, the LOMOS Dashboard backend was extended it and developed in Python. Now

LOMOS supports configuration forms in the dashboard. This enables users to configure and run the

training and inference processes through a web dashboard. The LOMOS dashboard backend passes the

requests to the LOMOS controller which executes the jobs.

 The LOMOS API-2 – it is named “2” because LOMOS Controller already has an API for receiving

requests for training and inference – is also a REST API, written in Python, and it is containerised and

integrated into the ICOS Controller Suite. It enables communication between LOMOS, located

outside ICOS, and ICOS.

 LOMOS API-2 exposes the anomaly scores to the Intelligence Coordination API to be queried by

Meta-kernel services (e.g. Telemetry). Higher score means a bigger presence of the anomalous events

in the logs. The anomaly score also includes the timestamp and a sample log line with the anomaly.

Figure 26 showed an example of the anomaly score in JSON format.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 53 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

4.6 Audit

This section provides the functional and technical description of the Audit functionality in ICOS.

4.6.1 Functional description

The Audit module in the scope of ICOS aims to provide a robust security auditing solution that integrates

Trivy for security scanning, Tetragon for runtime behaviour monitoring, and finally a Prometheus

exporter for auditing metrics collection.

In containerised environments, a significant portion of vulnerabilities arises from misconfigurations,

particularly when containers are granted more privileges than necessary. In some cases, the application

containers may have extended privileges that are essential for their execution. These overly permissive

configurations can expose both the containerised application and the underlying host system to serious

security risks.

Trivy provides a first layer of auditing on a given application by analysing application’s manifest and

its container images. This analysis covers security aspects that relate on what privileges are granted by

the current configuration and how much they comply with best security practices for containerised

environments by providing a severity score [LOW, MEDIUM, HIGH].

Tetragon is able to perform real time monitoring on events emitted by the kernel using eBPF (Extended

Berkeley Packet Filter) [37] and produce audit logs on those events. Since kernel events are emitted in

high volumes, Tetragon is using Trivy’s analysis as a baseline in order to produce real time audit logs

that focus on the security aspects identified by Trivy.

Prometheus exporter is forwarding the produced audit logs to the Telemetry Controller to be used by

the Policy manager to monitor compliance of the running application and to notify Job manager if the

policy violation occurred and remediation action is needed (see Figure 27).

With Trivy performing security scans and Tetragon producing audit logs at runtime, Audit module

contributes to meeting the following ICOS functional requirements from the D2.3 (see Table 15 in

Annex III.A).

4.6.2 Technical description

A containerised application can have multiple containers, and each container can have its own

configuration coming from a Kubernetes manifest and in addition each container could run on different

Kubernetes nodes. The deployment of an application as a whole on different edge infrastructure

instances poses a challenge on how to collect and associate auditing logs with each respective

application since each container will produce its own auditing metrics. Another challenge is the large

volume of the events emitted by the kernel and the distinction on which contain meaningful security

insights. In order to address those challenges the audit component combines both Trivy and Tetragon

capabilities as described below.

Tetragon overcomes the challenge of associating which event is emitted by which application since it

supports Kubernetes awareness on workload identities such as pods, namespaces and containers. On the

other hand, it is also an observability tool that produces a high volume of events and a filtering technique

on those events is needed in order to reduce the overall overhead of data collection of irrelevant events.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 54 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 27. Audit module architecture

This filtering mechanism is achieved by applying pre-defined monitoring policies using Tetragon’s

CRDs (Custom Resource Definitions) which target the following aspects of a containerised application:

 Filesystem: access and modifications on critical files (for instance files in /etc and /tmp folders should

be monitored)

 Privileges escalation: processes on runtime, elevate their privileges in order to perform their tasks.

 Linux capability usage: Linux capabilities are a set of fine-grained access control mechanisms that

divide the traditional root privileges into distinct units, allowing processes to execute specific

privileged operations without requiring full root access.

 Networking: Connections outside the cluster should be monitored.

 Binary execution: Malicious actors often use core binaries that are shipped by default in most Linux

distributions such as git, wget, netcat etc. The execution of those binaries should be monitored or

blocked during execution.

The Audit component automatically installs all Tetragon dependencies alongside the pre-defined

observability policies. The pre-defined observability policies are mapped with the first layer auditing

analysis by Trivy which target the same security context. A set of Trivy audit rules and how they map

on Tetragon observability policies is presented in Table 2.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 55 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Table 2. Sample of Tetragon observation policies

Requirement

ID

Requirement Name Description

KSV007 /etc/hosts aliases unmanaged Filesystem

KSV009 network namespace permits processes in

the pod to communicate with processes

bound to the host’s loopback adapter

Networking

KSV012 run as a non-root user to ensure least

privileges

Privilege Escalation

KSV014 Root file system is not read-only Filesystem, Privilege Escalation

KSV020 run with user ID > 10000 to avoid

conflicts with the host’s user table

Privilege Escalation, Linux

Capability Usage

KSV021 run with group ID > 10000 to avoid

conflicts with the host’s user table

Privilege Escalation, Linux

Capability Usage

KSV023 Host path is mounted Filesystem, Privilege Escalation

KSV117 The ports which are lower than 1024

receive and transmit various sensitive

and privileged data

Networking

The binary execution policy produces audit logs based on the image scanning report which reports which

Linux binaries are potential tools for a malicious action and should be blocked in order to reduce the

attack surface.

4.7 Trust

This section provides the functional and technical description of the Trust functionality in ICOS.

4.7.1 Functional description

As presented in D2.4 [2], Trust is implemented as an architecture-wide functionality in ICOS, present

at three levels:

 In identification and encrypted communication between ICOS components located inside the

Controller and ICOS components located inside the Agent using CNI (Container Network Interface)

with VPN encryption technologies (e.g., Wireguard).

 In identification and encrypted communication between ICOS components in the ICOS Controller

and in the ICOS Agent using certificates and (m)TLS.

 In identification and encrypted communication between ICOS users and ICOS components using

VPN technologies (e.g., Wireguard).

For trust and encrypted communication between ICOS components located in ICOS Controller and

ICOS agent, we use self-signed certificate authority (CA). We decided against using public and widely

used CA like Let’s encrypt [38] as it would be necessary to expose ICOS components to the internet

and rely on the external service. By using self-signed CA, we have complete control and management

over the trust chain as well as ability to isolate ICOS components.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 56 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

For self-signed CA, we use step-cat15 that allows for issuing X.509 certificates for use with TLS and

mutual TLS (mTLS) and plays well with Kubernetes as the main containerisation technology in ICOS.

For encrypted communication between ICOS components in the ICOS Controller and in the ICOS Agent

we use Cilium, an open source, cloud native solution for securing network connectivity. It enables the

encryption of all node-to-node traffic with just one switch, no application changes or additional proxies,

features automatic key rotation with overlapping keys, efficient data path encryption through in-kernel

IPsec or WireGuard, and can encrypt all traffic, including non-standard traffic like UDP [44]. For the

ICOS Controller and ICOS Agent, Cilium is configured as the Container Network Interface (CNI) in

Kubernetes cluster and uses Wireguard as an encryption protocol [39].

Wireguard is also used as the VPN technology for secure and encrypted access for ICOS users to the

ICOS system.

The implementation of Trust functionality contributes to meeting the following ICOS functional

requirements from the D2.3 [3] (see Table 16 in Annex III.A).

4.7.2 Technical description

The step-ca is distributed as a part of the ICOS Core suite. It is composed of the following components:

1. Step Certificates: An online certificate authority and related tools for secure automated

certificate management, so it is possible to use TLS everywhere.

2. Autocert: A Kubernetes add-on that automatically injects TLS/HTTPS certificates into

containers.

3. Step Issuer: A certificate issuer for cert-manager using Step Certificates.

The architecture of step-ca in ICOS is presented in Figure 28. Certificate authority is a service for

managing certificates and is located in the Kubernetes cluster. It communicates with the Kubernetes-

compatible Cert manager16 that is responsible for distributing certificates to ICOS modules and

components in the Kubernetes cluster using Nginx Ingress Controller.

Figure 28. Self-signed CA architecture

Cilium and Wireguard

Cilium CNI operates by deploying agents on each Kubernetes node that program eBPF to handle pod

networking. The agents create and manage virtual network interfaces for pods and handle routing

15 https://github.com/smallstep/certificates
16 https://github.com/cert-manager/cert-manager

https://github.com/smallstep/certificates
https://github.com/cert-manager/cert-manager

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 57 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

between nodes. In the figure provided below (see Figure 29) the Cilium CNI networking interfaces are

depicted as a single interface (cni iface) in order to emphasise the traffic relay to the Wireguard tunnel

where the encryption takes place.

Figure 29. Cilium-Wireguard Encrypted Networking

Cni iface: A set of interfaces that Cillium creates and manages as it operates as a cni:

• cilium_net_bridge: Main interface programmed with eBPF for pod networking which handles

pod-to-pod traffic within the node.

• cilum_vethX: For each pod, cilium creates this interface in order to pair it with its dedicated

container interface (usually eth0). With this pairing the connection with cilium_net_bridge

interface is achieved.

Upon installation with Wireguard encryption enabled, Cilium creates a WireGuard interface

(cilium_wg0) on each node. As pods communicate across nodes, their traffic is encapsulated and

encrypted through these WireGuard tunnels. Each node maintains encrypted tunnels to other nodes

where pod communication is required.

The overall traffic exchange and encryption flow is:

1. Cilium agent detects cross-node traffic

2. Traffic is redirected to the local WireGuard interface

3. WireGuard encrypts the packets using public-key cryptography

4. Encrypted packets are sent to the destination node

5. Destination node's WireGuard interface decrypts the traffic

6. Cilium routes decrypted packets to the target pod

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 58 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

4.8 Limitations and future work

In the development of the Security Layer, we encountered certain limitations that impacted the design

of the Layer’s modules and components:

1. Security scan:

a) To provide full scanning functionality, Wazuh agents need to be manually installed on

infrastructure where ICOS is running, and this has to be done in the ICOS on-boarding

phase. Detailed documentation for this step can be found in the next link:

https://www.icos-project.eu/docs/Administration/ICOS%20Edge/wazuh_agent/

b) The Wazuh server, however, is containerised and deployed as part of the ICOS

Controller Suite.

2. Anomaly detection: LOMOS is deployed outside of ICOS due to hardware requirements

(GPU) and an additional API was developed (LOMOS API-2) for communication with ICOS

(Intelligence AI Coordination backend).

In terms of future work, there is still ongoing work about providing intelligence functionality to the

Security Layer, with a focus on robust security models based on Tetragon logs for detection of security

issues (anomalies) in ICOS and application containers as presented in D2.4, section 4.11.3.

 The first step involves leveraging unsupervised learning techniques to label Tetragon logs. This

approach identifies patterns, clusters, and potential anomalies in the logs without prior labelled data,

providing a foundational understanding of typical and atypical log behaviours.

 Tetragon's core functionality is monitoring and tracking process execution lifecycles through eBPF,

which means the log patterns are relatively static and structured. This static nature of kernel logs adds

additional challenges of distinguishing between benign and malicious patterns. In order to create a

concrete solution that leverages Tetragon logs for anomaly detection, a comprehensive methodology

must address several critical aspects:

- The Static Nature of Process Execution: Process execution patterns captured by Tetragon follow

highly predictable sequences that contain most variances from legitimate actions by the system.

The static aspect of process execution log data makes the task of detecting anomalies significantly

difficult, as the execution traces of system calls and interactions between processes often follow

well-defined flows, and as a result, more subtle malicious activity can sometimes be hidden. As

normal operations are so predictable, it can be challenging to identify signs of true anomalous

behavior.

- Monitoring Policy Design: The development of effective Tetragon monitoring policies requires

the selection and monitoring of specific system calls, while ensuring that the policies capture

relevant process interactions without overwhelming system resources.

- Generation of Anomalous Patterns: The creation of effective training datasets for Tetragon-

based anomaly detection requires deliberate engineering of malicious patterns, where anomalous

actions are specifically designed to trigger the pre-defined monitoring policies. This approach

involves simulating attack scenarios or anomalous patterns in order to generate a range of training

examples, while observing how those patterns reflect on the generated logs.

 Once the logs were successfully labelled, a supervised ML model, such as LogBERT, log-inspector,

or other anomaly detection frameworks, can be trained to predict and identify anomalies based on the

labelled data. These models specialise in analysing log data, detecting unusual behaviours, and

classifying events that could indicate potential security threats. Finally, the system would use the

predictions from the trained model to generate alerts, providing early warnings about vulnerabilities

or suspicious activity, thus enabling proactive system defence.

This integration and automatic flow of relevant Tetragon logs into Telemetry or data management

components is currently ongoing, and an unsuccessful completion could jeopardise the impact of any

AI models deployed. The final status of this piece of work will be reviewed and updated accordingly as

part of D5.3 – “Third ICOS Release: Complete ICOS version” [8].

https://www.icos-project.eu/docs/Administration/ICOS%20Edge/wazuh_agent/

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 59 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

5 Conclusions

This document has covered the functional and technical aspects of the second version (IT-2) of Data

Management, Intelligence Layer and Security Layer software. This document has used D4.1 as the input

and first version of the Data Management, Intelligence Layer and Security Layer software (IT-2) and

the second version of the architecture (D2.4) and provided updates where applicable.

 The Data Management component architecture was initially described in D4.1 as a set of software

blocks, that allows ICOS components to access data regardless of its location in the continuum, aiming

at optimising data access by executing part of the code within the data store and therefore minimising

data movements within and across nodes. Building upon this foundation, IT-2 enhances software

architecture and integration with other ICOS components. The Data Management component fulfils

critical data requirements, encompassing transport, mutable data structures, and computationally

intensive operations. Employing Zenoh for communication and dataClay for distributed storage

facilitates functionalities such as the ICOS data bus, training offloading, telemetry processing, and

policy storage.

 The Intelligence Layer in IT-2 includes the four next modules: AI coordination, data processing,

Trustworthy AI, and AI Analytics. It also introduces the AI Model and Data repository, which will be

delivered in D4.3 (M36). Built from the base provided in D4.1, the Intelligence Layer has been

extended as follows. First, as part of technical discussions held in task forces aiming to provide an

update on ICOS Intelligence towards D2.4, the AI coordination Layer has been extended to include a

frontend to interact with the meta-OS. This new frontend component queries telemetry data to

determine when predictions are required for system usage or energy-related measurements. It then

sends requests to the AI coordination backend (detailed in IT-1) to train a new model or generate

predictions. The Intelligence Layer modules have been significantly enhanced, including (i) support

for multivariate model training, enabling the concurrent forecasting of numerous system metrics like

CPU and memory usage; (ii) integration of MLOps tools, streamlining performance analysis via

training and validation curves, and improving model interpretability for greater transparency; (iii) For

AI trustworthiness, confidence levels and ranges have been incorporated to indicate prediction

accuracy. Furthermore, model monitoring improves robustness, and federated learning allows for

privacy-preserving model development while minimising data transfers; (iv) for efficient AI at the

edge, model size reduction techniques, such as quantisation and knowledge distillation, have been

employed and added to the backend of ICOS Intelligence.

 The Security Layer in IT-2 leverages the base from IT-1 (D4.1) and enhances identity management,

anomaly detection, auditing, and trust mechanisms. The Security Layer Coordination module enables

seamless integration between security components and other ICOS modules. The Identity and Access

Management (IAM) module provides secure authentication and authorisation across ICOS. The

Security Scan module actively monitors deployed ICOS infrastructure for vulnerabilities and

compliance deviations, while the Anomaly Detection module employs AI to identify potential security

threats. Furthermore, the Audit module improves system transparency, and the Trust functionality

assures the identity of ICOS components and enforces encrypted, verifiable communication among

them. All these modules are currently part of ICOS and will finalise their integration in the ICOS Final

release (task T5.3 and deliverable D5.3 [8]).

Table 3 presents which parts of Data Management, Intelligence Layer and Security Layer IT-2 can be

considered as ICOS assets as an update over D4.1.

ICOS modules and components in this document “Data Management, Intelligence and Security Layers

(IT-2)” finalise their development planned period in M30. Integration work will still be performed

among them towards the ICOS final release. For this reason, this document will also be used as input to

D5.3 – “Third ICOS Release: Complete ICOS version” [8], that will expand on integration pieces

involving components covered in this deliverable.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 60 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

The online component which will continue its development process in this work package will be the “AI

Model and Data Repository”, presented in Section 3.6, which is planned to be delivered in D4.3 – “ICOS

Dataset and AI Models Marketplace” (M36).

Table 3. Data Management, Intelligence and Security Layers IT-2 parts as ICOS assets

ICOS

Modules

ICOS ASSETS

Data

Management

1. Data Bus which allows horizontal communication across computing continuum

thanks to the Zenoh routers. It is used by the Topology Exporter but its features

can be leveraged by other applications.

2. dataClay backend enables advanced features such as the task offloading (used

by the Intelligence Layer for training workloads) or the Policy storage backend.

It is a data management solution distributed across the ICOS infrastructure.

3. dataClay OTLP Bridge leverages the dataClay backends for reading processing

and storing real-time data metrics close to its source and using them from

federated learning workloads.

 The Data Management assets that were already presented in D4.1: Metadata

Service, Storage backends, the REST API, and a storage manager plugin.

Intelligence

Layer

1. Intelligence Layer Coordination frontend (Export Metrics API): This element

enables real-time and predictive monitoring by collecting telemetry data from

ICOS nodes and integrating it with AI models in the Intelligence Layer. It

supports dynamic and static metric creation, allowing both on-demand

telemetry-based metric generation and automated discovery of new nodes for

resource monitoring (CPU, Memory, and Energy consumption). The API also

provides lifecycle management for metrics, ensuring efficient resource

allocation and accurate tracking across the ICOS infrastructure.

2. Intelligence Layer Coordination backend (Intelligence Layer Coordination API

in D4.1 [7]): This API supports async calls to model building and predictions,

has its own model registry, and allows the reuse of previously trained models

in an ICOS controller. This has been enhanced to communicate with extra APIs

such as Export Metrics API and LOMOS API 2, and updated modules as

covered in this deliverable.

3. Trustworthy AI module: This module contains methods for model monitoring,

explainability and confidence scores that have been inbuilt into the AI

Analytics module predictions.

4. Model compression: Several mechanisms, as described in this deliverable, have

been inbuilt in the AI Analytics module to improve AI model efficiency and

reduce its footprint at the edge.

5. ICOS-FL Module (Server and Clients) enables decentralised training

operations among different ICOS nodes, while also allowing for knowledge

sharing between local learning models. This module offers an extra capability

for ICOS administrators to initiate and execute FL training rounds without

sharing the local data of ICOS nodes. Once FL training is done, the aggregated

model (across ICOS nodes) is stored in the ICOS AI Models Repository for

future usage.

6. AI Models and Data Repository: This online repository, which integrates with

the Intelligence Layer, is one of the ICOS KERs. Planned for D4.3 – “ICOS

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 61 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

ICOS

Modules

ICOS ASSETS

Dataset and AI Models Marketplace,” it intends to allow ICOS to leverage an

online catalogue of AI models and datasets.

 The Intelligence Layers models that were already presented in D4.1 for intelligent

energy-aware task offloading, load time series forecasting, forecasting upcoming

load anomalies, and CPU utilisation forecasting to improve workload distribution

model.

Security

Layer

1. Anomaly detection module analyses ICOS services or user applications logs to

detect any kind of abnormal situation that could be a potential security threat.

2. Audit module provides real-time behaviour monitoring of Kubernetes containers

to identify events that pose a security threat (breach security compliance policy).

3. Trust provides identification and secure (encrypted communication) between

ICOS components in the ICOS Controller and in the ICOS Agent, between ICOS

Controller and the ICOS Agent and between ICOS users and ICOS system.

 The Security Layers assets that were already presented in D4.1: Security Layer

Coordination module API, Identity and Access Management module, Security

Scan module.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 62 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

6 References

[1] Towards a functional continuum operating system (ICOS), Grant Agreement N°101092562,

Horizon EU.

[2] ICOS. D2.2 - ICOS ecosystem: Technologies, requirements, and state of the art (IT12). Francesco

D’Andria, 2023.

[3] ICOS. D2.3 - ICOS ecosystem: Technologies, requirements, and state of the art (IT-2). Georgios

Xylouris. 2024

[4] ICOS. D3.2 - Meta-Kernel Layer Module Developed (IT-2). Francesc Lordan. 2024

[5] ICOS. D3.3 - Meta-Kernel Layer Module Integrated (IT-2). Kalman Meth. 2025

[6] ICOS. D2.4 - ICOS architectural design (IT-2). Jordi García. 2024

[7] ICOS. D4.1 - Data management, Intelligence and Security Layers (IT-1). Hrvoje Ratkajec. 2023

[8] ICOS. D5.3 - “Third ICOS Release: Complete ICOS version”. 2025

[9] Open Call infrastructure On-Boarding v1.3 document, NCSRD (internal), 2024

[10] Giannopoulos, A., Spantideas, S., Kapsalis, N., Karkazis, P., & Trakadas, P. (2021). Deep

reinforcement learning for energy-efficient multi-channel transmissions in 5G cognitive hetnets:

Centralized, decentralized and transfer learning based solutions. IEEE Access, 9, 129358-129374.

[11] Giannopoulos, A., Paralikas, I., Spantideas, S., & Trakadas, P. (2024). HOODIE: Hybrid

Computation Offloading via Distributed Deep Reinforcement Learning in Delay-Aware Cloud-

Edge Continuum. IEEE Open Journal of the Communications Society.

[12] Goodwin, P. and Lawton, R. (1999). On the asymmetry of the symmetric MAPE. International

journal of forecasting, 15(4), 405-408.

[13] Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., ... & Gebru, T.

(2019, January). Model cards for model reporting. In Proceedings of the conference on fairness,

accountability, and transparency (pp. 220-229).

[14] Liang, W., Rajani, N., Yang, X., Ozoani, E., Wu, E., Chen, Y., ... & Zou, J. (2024). What's

documented in AI? Systematic Analysis of 32K AI Model Cards. arXiv preprint arXiv:2402.05160.

[15] Yang, X., Liang, W., & Zou, J. (2024). Navigating Dataset Documentations in AI: A Large-

Scale Analysis of Dataset Cards on Hugging Face. arXiv preprint arXiv:2401.13822.

[16] Polino, A., Pascanu, R., & Alistarh, D. (2018). Model compression via distillation and

quantization. arXiv preprint arXiv:1802.05668.

[17] Chen, L., Bai, Y., Huang, S., Lu, Y., Wen, B., Yuille, A. L., & Zhou, Z. (2022). Making your

first choice: To address cold start problem in vision active learning.

[18] Suárez-Cetrulo, A. L., Quintana, D., & Cervantes, A. (2023). A survey on machine learning for

recurring concept drifting data streams. Expert Systems with Applications, 213, 118934.

https://www.icos-project.eu/files/deliverables/D2.1_ecosystem_and_of_art_v1.1.pdf

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 63 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

[19] Zheng, X., Li, P., Hu, X., & Yu, K. (2021). Semi-supervised classification on data streams with

recurring concept drift and concept evolution. Knowledge-Based Systems, 215, 106749.

[20] Zenoh, https://zenoh.io/, retrieved 2023-09-20.

[21] dataClay, https://dataclay.bsc.es/, retrieved 2024-12-20.

[22] MLFlow, https://mlflow.org/, retrieved 2024-12-20.

[23] Grafana, https://grafana.com/, retrieved 2024-12-20.

[24] Prometheus, https://prometheus.io/, retrieved 2024-12-20.

[25] BentoML, https://docs.bentoml.org/en/latest/index.html, retrieved 2024-12-20.

[26] Pandas, https://pandas.pydata.org/, retrieved 2024-12-20.

[27] Scikit-learn, https://scikit-learn.org/stable/index.html, retrieved 2024-12-20.

[28] PyTorch, https://pytorch.org/, retrieved 2024-12-20.

[29] TensorFlow, https://www.tensorflow.org/, retrieved 2024-12-20.

[30] SHAP, https://github.com/shap/shap, retrieved 2024-12-20.

[31] Scaphandre, https://github.com/hubblo-org/scaphandre, retrieved 2024-12-20.

[32] OpenID Connect protocol, https://openid.net/, retrieved 2024-12-12.

[33] OAuth 2.0 protocol, https://oauth.net/2/, retrieved 2024-12-12.

[34] JSON Web Token, https://jwt.io/, retrieved 2024-12-12.

[35] Trivy, https://github.com/aquasecurity/trivy, retrieved 2024-12-12.

[36] Tetragon, https://tetragon.io/, retrieved 2024-12-12.

[37] eBPF, https://ebpf.io/, retrieved 2024-12-12.

[38] Lets encrypt, https://letsencrypt.org/, retrieved 2024-12-12.

[39] Wireguard, https://www.wireguard.com/, retrieved 2024-12-12.

[40] Keycloak, https://www.keycloak.org/, retrieved 2024-12-12.

[41] Wazuh, https://wazuh.com/, retrieved 2024-12-12.

[42] Kibana, https://www.elastic.co/kibana/, retrieved 2024-12-25.

[43] Elastic Search, https://www.elastic.co/, retrieved 2024-12-25.

[44] Cilium, https://cilium.io/, retrieved 2024-12-12.

https://zenoh.io/
https://dataclay.bsc.es/
https://mlflow.org/
https://grafana.com/
https://prometheus.io/
https://docs.bentoml.org/en/latest/index.html
https://pandas.pydata.org/
https://scikit-learn.org/stable/index.html
https://pytorch.org/
https://www.tensorflow.org/
https://github.com/shap/shap
https://github.com/hubblo-org/scaphandre
https://openid.net/
https://oauth.net/2/
https://jwt.io/
https://github.com/aquasecurity/trivy
https://tetragon.io/
https://ebpf.io/
https://letsencrypt.org/
https://www.wireguard.com/
https://www.keycloak.org/
https://wazuh.com/
https://www.elastic.co/kibana/
https://www.elastic.co/
https://cilium.io/

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 64 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Annexes

This section contains annexes to this deliverable.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 65 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Annex I: Data management

I.A Requirements

Table 4. Requirements starting to be met with the IT-2 of the Data Management Component [1]

Requirement

ID

Requirement Name Description

CC_FR_03 Topology awareness ICOS should be able to monitor and maintain the

topology of the created Cloud Continuum.

CM_FR_02 Workload offloading ICOS MUST be able to distribute the workload of the

application components offloading part of their

computation onto other nodes of the infrastructure, and

coordinate the offloaded components

CM_FR_10

[D4.1]

Data management ICOS must be able to maintain the data sources

topology as well as data source types (metadata) for

proper application data assignment.

CM_FR_11

[D4.1]

Data access ICOS must be able to provide different data access

methods, including selective access as well as

streaming access, according to flexible high level data

access application program interfaces

CM_FR_15 ML Scalability and

maintenance

ICOS SHOULD perform model training detached

from ICOS nodes. By training the models on a separate

platform with more computing power, it is possible to

produce models with higher accuracy and to reduce the

time required to train them. Once the models are

trained, they can be deployed on ICOS nodes to make

predictions and carry out specific tasks.

DRT_FR_01

[D4.1]

Data distribution

across the continuum

ICOS SHOULD take advantage of all available

devices to place data. Flexibility to adapt to different

configurations (cloud-only, edge-only, cloud-edge)

DRT_FR_02

[D4.1]

Transparent data

access

ICOS must be able to provide location and format

transparent data access methods through flexible high

level data access application program interfaces (API)

DRT_FR_03

[D4.1]

Minimisation of data

transfers

ICOS MUST avoid unnecessary data movements to

increase performance, reduce network congestion, and

favour privacy by exploiting near-data processing

DRT_FR_04

[D4.1]

Support for

distributed/parallel

execution

ICOS SHOULD provide the integration of data

management with the execution runtime to support

efficient scheduling and execution of the required

tasks.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 66 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Requirement

ID

Requirement Name Description

DRT_FR_05

[D4.1]

Failure recovery

mechanism/manageme

nt

ICOS MUST provide the capability to restart the

failing transfers of the data in case of the failures (e.g.,

losing the connectivity)

DRT_FR_06

[D4.1]

Secure data exchange ICOS SHOULD support data preserving

communication techniques between modules

(interfaces) for secure data exchange.

DRT_FR_07

[D4.1]

Data recompilation Control Nodes must be able to recollect data in a

scheduled or periodic way from the nodes it

orchestrates

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 67 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

I.B Zenoh Helm chart snippet

config:
 zenohJson: |-
 {
 "adminspace": {
 "enabled": true,
 "permissions": {
 "read": true,
 "write": true
 }
 },
 "connect": {
 "endpoints": [
 "tcp/10.160.3.20:7447"
]
 },
 "listen": {
 "endpoints": [
 "tcp/0.0.0.0:7447"
]
 },
 "metadata": {
 "name": "give-me-a-name",
 },
 "mode": "router",
 "plugins": {
 },
 "scouting": {
 "gossip": {
 "autoconnect": {
 "peer": [],
 "router": []
 },
 "enabled": true,
 "multihop": true
 },
 "multicast": {
 "enabled": true
 }
 }
 }
local:
 ports:
 - name: zenoh
 port: 7447
 protocol: TCP
 targetPort: 7447
 replicas: 1
 type: LoadBalancer
 zenohLocal:
 args:
 - -c
 - /etc/zenoh.json
 env:
 rustLog: z=debug
 image:
 repository: eclipse/zenoh
 tag: 1.0.0

Figure 30. Zenoh configuration Helm chart

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 68 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Annex II: Intelligence Layer

II.A Requirements

Table 5. Requirements starting to be met with the IT-2 of the Intelligence Layer [1]

Requirement

ID

Requirement

Name

Description

CM_FR_08 Predictive

Monitoring/SLOs

violations

ICOS SHOULD predict potential future SLOs

violations analysing monitoring metrics with ML

techniques, and prepare to avoid/absorb such risk

CM_FR_14 Model Optimisation

Techniques

ICOS SHALL provide different methodologies for the

pruning calculation of different deep neural network

backbones that provides efficient sparse connectivity

for modeling high-performance models on edge

nodes. Distillation techniques will be used to shorten

training times using the high capability of large

models, the ICOS system will offer various

techniques for distilling various deep neural network

backbones.

CM_FR_15

[D4.1]

ML Scalability and

maintenance

ICOS SHOULD perform model training detached

from ICOS nodes. By training the models on a

separate platform with more computing power, it is

possible to produce models with higher accuracy and

to reduce the time required to train them. Once the

models are trained, they can be deployed on ICOS

nodes to make predictions and carry out specific

tasks.

CM_FR_16 Federated Learning

benchmarking

ICOS MUST be able to train models over open-source

federated learning frameworks. Models trained on

ICOS nodes (the edge or on the cloud) will be able to

share knowledge when applicable to learn

collaboratively.

CM_FR_17

[D4.1]

AI for resource

management

ICOS MUST classify infrastructure that facilitates the

resource management on the network, and

implements various resource management algorithms

for the continuum, as well as clustering the various

resources in the ecosystem with the goal of optimising

those available.

CM_FR_18

[D4.1]

MLOps frameworks ICOS MUST allow the storage, retrieval and

modification AI models available to be used by clients

and AI-as-a-Service (AIaaS) providers from ICOS

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 69 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Requirement

ID

Requirement

Name

Description

CM_FR_19

AI Marketplace ICOS SHOULD use data science and MLOps

frameworks to ensure reproducibility and proper

documentation of each model built or experiment run.

CM_FR_20

[D4.1]

Continuous learning The ICOS SHOULD support algorithms for

continuous learning, adapting to drifts and shifts and

avoiding catastrophic forgetting.

OP_FR_03

[D4.1]

Resources

classification

ICOS MUST be able to catalogue the reliability,

trustworthiness, confidence, of system resources, in

order to take into consideration during the resources

allocation process

OP_FR_06 Data Processing and

ML modeling

ICOS MUST support dashboard/interface for data

processing and ML modeling purposes. A concrete

demonstration of the model training and inference

performance will be provided via a dedicated GUI.

Data processing, ML and FL platforms will be based

on open-source tools to offer scalability and

transparency of the deployed models.

SST_FR_04 Secure & robust

model training

ICOS SHOULD provide the ability to train models in

a federated learning fashion to ensure privacy and

trust. Privacy can be guaranteed by training data on

the edge. Robustness is assured by assessing the data

against anomaly detection.

SST_FR_05 Providing trustable

models

ICOS SHALL use models ethically unbiased. By

using these models, ICOS strives to preserve trust in

the outputs of the ICOS system and provide a fair and

equitable experience for all.

SST_FR_09

[D4.1]

Anomaly detection ICOS MUST provide a mechanism for the detection

of anomalies (e.g., any kind of abnormal situations,

including potential security threats, that is recorded in

application, system, or network logs) in the

applications/services on the cloud/network/edge

provider

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 70 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

II.B Intelligence coordination – backend endpoints

The models deployed in the AI Analytics module entail using Swagger API or curl through the AI

coordination backend service, as well as training and testing and testing pipelines may be fully

parameterised using this API, which is a crucial component of the design. See the endpoints in Table 6.

Table 6. AI Analytics API endpoints

HTTP request

(ICOS Shell)

description ICOS

compone

nt

component

name

component

port

component endpoint

POST /train Trains a

model as per

parameters

Analytics

module

API to Train a

model

3000 POST
/core/analytics_train/

POST /predict Generates

model

predictions

Analytics

module

API to get

model

predictions

3000 POST
/core/analytics_predict/

POST

/detect_drift

Detects drifts

by

monitoring

the data

Analytics

module

detect drifts 3000 POST
/core/analytics_drift_detecti

on/

POST

/get_anomalies

Gets

anomalies

from

LOMOS api

Analytics

module

Gets

anomalies –

linked to

LOMOS (see

Section 4.5)

3000 POST
/core/analytics__get_anomalie

s/

POST

/launch_mlflow

_ui

Start mlflow

ui service

Analytics

module

Start mlflow ui 5000 POST
/core/analytics_launch_mlflow

_ui/

The API endpoint ‘get_anomalies’ obtains anomaly scores, presented as part of the Security Layer in this

document, but reachable from the Intelligence API due to its AI function. The integration between

Intelligence and Security Layers for this has been already documented in D2.4 [6], Sections 3.2.2 –

“Intelligence Layer” and 4.11.1 – “Anomaly detection”

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 71 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

The AI support container will have all the API endpoints described in Table 6 except for an additional

Jupyter lab API service to launch a Jupyter lab notebook session. See this below.

Table 7. AI Support container API endpoints

HTTP request

(ICOS Shell)

descripti

on

param

eter

ICOS

compo

nent

respons

ible

compo

nent

name

component

port

component

endpoint

POST
/jupyterlab_service

Starts a

Jupyter

lab

service

App

descrip

tor

Analyti

cs

module

CeAD

AR

API to

start

jupyter

lab

8080 POST
/core/analytics_jupy

terlab_service

Additionally, a JupyterHub service is supported in the AI Support container (for edge devices), offering

user login capabilities. However, it requires administrator access to create and manage user accounts

within the container before notebooks can be shared. The steps to do this are described below.

Configuring JupyterHub

 1) Enter the Docker Container:

 Use the following command to access the ICOS Intelligence Coordination API Docker container:

docker exec -u root -it icos_intelligence_docker /bin/bash

 2) Create a User Account (Inside Docker):

 Once inside the container, create a user account:

passwd UC1 # Replace UC1 with your desired username

 3) Run JupyterHub:

 Execute the following command within the Docker container, using your JupyterHub configuration

file:

jupyterhub -f /path/to/jupyterhub_config.py # Replace with the actual path

 4) Access JupyterHub (Browser):

 Open your web browser and navigate to the appropriate address to access your JupyterHub session.

• Enter the credentials you created in step 2.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 72 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

II.C Intelligence coordination – frontend workflows

The export metrics API seamlessly integrates with the ICOS architecture, forming a crucial bridge

between ICOS components and the telemetry data sources, Intelligence Layer functionalities, and

monitoring platforms like Prometheus and Thanos. Below is a detailed description of how this

integration is achieved:

 Authentication workflow with Keycloak: All requests to the export metrics API and the Intelligence

API are secured using Keycloak [40], ensuring that only authorised clients can access the system.

Keycloak provides role-based access control, making it easier to manage user permissions across

various components. This ensures that sensitive data, such as telemetry metrics and machine learning

predictions, is securely handled.

Figure 31. Authentication workflow with Keycloak

 Telemetry integration: Telemetry agents like Kube Metrics, ICOS Telemetry Agent, LOMOS,

Scaphandre and more, collect real-time data from nodes and systems. This data is streamed to

Prometheus, Thanos and Grafana, which act as the primary telemetry controllers in the ICOS

architecture. These platforms enable historical data queries and facilitate the creation of metrics for

monitoring and predictive purposes.

Figure 32. Telemetry integration workflow

 API workflow: the Metrics Export API handles the flow of data from telemetry sources to predictive

models and back to the monitoring systems. It interacts with Grafana, Prometheus, and Thanos to

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 73 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

retrieve telemetry data and uses the Intelligence API for machine learning-based model training and

inference.

 As part of its functionality and part of the static metric creation method, the Export Metrics API

implements an automated background process that interacts with the ICOS Aggregator at regular

intervals (suggested interval time is 10 * telemetry scrape interval time). This mechanism ensures

continuous discovery of infrastructure changes by dynamically detecting new or removed nodes.

If a new node is found, the API proactively provisions standard telemetry metrics for CPU,

Memory, and Energy consumption. If a node is removed, the system automatically de-registers its

associated metrics, preventing redundant data accumulation.

• The workflow includes retrieving telemetry metrics, formatting them for inference or training,

and posting the results as new metrics to Prometheus or Thanos.

• Figure 34 and Figure 35 show screenshots of the Swagger UI of the AI coordination frontend

(export metrics API) and the AI coordination backend (Intelligence API), respectively, as a

demonstration of how these interactions occur at the API level.

Figure 33. Export Metrics API Workflow

 Metrics and predictions in Prometheus/Thanos: After the AI models generate predictions, the results

are saved from Prometheus client library and be scraped from /metrics endpoint as new metrics from

Prometheus and Thanos. This ensures that both real-time and predictive insights are available for

monitoring, enabling operators to respond proactively to changes in the system.

 Model registry integration: Model training and inference activities are performed by querying the

Intelligence Layer AI Coordination API developed as part of D4.1 – “Data management, Intelligence

and Security Layers (IT-1)”. Thus, the functionality presented in previous deliverables is kept. New

models trained are registered into the model registry part of the Intelligence Layer, ensuring that they

can be reused for future inference tasks. This reduces redundancy and enhances the efficiency of the

system. The model registry is also framework-agnostic, thus ensuring compatibility between trained

models within the ICOS Intelligence Layer and allowing system admins to import their own models

to be queried by Intelligence frontend and backend APIs (Export Metrics and Intelligence APIs

respectively).

 Role of dataClay in the architecture: dataClay serves as a key component in the training workflow.

When telemetry data is used to train machine learning models, it is first prepared and stored in

dataClay as structured datasets. These datasets are then accessed by the Intelligence API for model

training. dataClay plays an integral role in ensuring that data is organised and readily available for

processing.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 74 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 34. Export Metrics API Swagger documentation

Figure 35. Intelligence Coordination API Swagger documentation

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 75 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

II.D Intelligence coordination –AI coordination frontend components and integration

The AI Coordination frontend (Export Metrics API) comprises several interconnected components that

facilitate metric creation, predictive analytics, and model training. Each component plays a vital role in

achieving the system's monitoring objectives.

 AI coordination frontend (Export Metrics API): This component is part of the AI Coordination module

and integrates Intelligence’s backend (Intelligence API) with MetaOS components such as Telemetry

and the Aggregator. Figure 36 depicts an example predictive metric diagram, demonstrating how

telemetry data is transformed into actionable metrics using machine learning models. In this diagram

the prediction of CPU consumption of an ICOS node is predicted. Green and yellow lines represent

predicted and actual CPU consumption respectively.

 It manages communications between the ICOS MetaOS and Intelligence for metric creation,

updates, and deletions.

 It provides RESTful endpoints for tasks such as generating new metrics, stopping active metrics,

and unregistering obsolete metrics.

 It supports telemetry-based predictive metric creation and model training workflows by integrating

with ICOS AI Coordination backend (Intelligence API in D4.1; the Intelligence API is ultimately

responsible for training AI models, managing them through a model registry and using them for

inference (e.g. predict metrics requested by AI Coordination frontend – “Export Metrics API”).

 Telemetry data sources: The system integrates with data sources such as Grafana, Prometheus, and

Thanos, which act as repositories of telemetry data.

 Telemetry agents like Kube Metrics, LOMOS, and Scaphandre continuously stream system data

to these platforms. Figure 37 and Figure 38 show diagrams of Grafana and Thanos, illustrating

their roles in storing and visualising telemetry data.

 AI coordination backend – Intelligence API: This component performs model training and inference

tasks. It is tightly integrated with the Metrics Export API to support workflows such as predictive

metric creation and model updates.

 The Swagger UI for the Intelligence API has been already shown in Section 3.2, highlighting its

capabilities for training machine learning models and handling inference requests.

 AI coordination backend – Model registry: The AI coordination backends’ model registry, already

described in D4.1, stores trained models to be reused. This component enables efficient management

of machine learning models, allowing them to be seamlessly integrated into monitoring workflows.

 Keycloak: Keycloak is used to secure access to AI coordination (Metrics Export API and Intelligence

API). It provides robust authentication and authorisation mechanisms, ensuring that only authorised

users can interact with the system.

 dataClay for data management: dataClay is utilised to prepare and store datasets for model training. It

acts as the intermediary storage system, where telemetry data is formatted and organised before being

used by the Intelligence API for training machine learning models.

 Data residing in dataClay can be used through the storage system active features, allowing task

offloading of learning processes –i.e., executing these processes within the dataClay backends,

where data is.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 76 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 36. Prediction of CPU consumption (percentage)

Figure 37. ICOS Grafana telemetry dashboard

Figure 38. Thanos query for CPU frequency at an ICOS agent

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 77 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

II.E Trustworthy AI – Federated Learning Sequence Diagram & Usage Demonstration

This annex first provides sequence diagrams for the Federated Learning training process.

Then, it provides a practical walkthrough on how to set up the ICOS-FL environment, launch the

necessary containers (including Scaphandre, Prometheus, and the dataClay OTLP bridge), and run the

ICOS-FL server and clients for federated training.

II.E.1 Sequence Diagram

Figure 39. Interactions between ICOS elements and actions during FL training processes

Below is a high-level overview of the pipeline:

 1) Scaphandre -> Prometheus: Scaphandre exposes energy-related metrics (CPU usage, memory

usage, power consumption). Prometheus scrapes these metrics at specified intervals.

 2) Prometheus -> OpenTelemetry Collector: The collector ingests these metrics and transforms

them to the OpenTelemetry protocol.

 3) OpenTelemetry Collector -> dataClay OTLP Bridge: The OTLP Bridge ingests the metrics from

the collector and stores them in dataClay objects.

 4) ICOS-FL -> dataClay: The ICOS-FL clients retrieve the data from dataClay (already in a

DataFrame form) to conduct local training.

 5) ICOS-FL Server: Oversees the training rounds, aggregates updates, and exports the final model

in BentoML format.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 78 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

II.E.2 Components of the FL process

 1) ICOS-FL Server (icos_fl_server)

- Controller - in IT-2, this element initialises the federated learning process, specifying the model

type (e.g., LSTM), model artifacts and any related hyperparameters. The first step here is to trigger

a dataClay container through the dataClay OTLP bridge.

 Aggregator - at dataClay node. It receives the FL workload from the controller. It waits for

clients in other ICOS nodes to connect (also through the OTLP bridge), dispatches the initial

model, and aggregates the updates from each client.

• Aggregator->Controller - Once the final (globally aggregated) model is available in the FL server,

this is transferred back to the model registry in the Intelligence Layer at the ICOS Controller.

 2) ICOS-FL Client (icos_fl_client)

- Runs on each participating ICOS node.

- Retrieves metrics from dataClay (as a DataFrame) for local training.

- Conducts the training on the local dataset for the current round.

- Sends model weight updates (or gradient updates) back to the server.

- Supports continuous retraining, periodically re-fetching data and updating the model.

 3) dataClay OTLP Bridge

- Intercepts data from the OpenTelemetry collector and writes it into dataClay.

- Ensures real-time or batched data ingestion, making metrics available for FL clients.

- In practice, it includes a Docker Compose stack with an OpenTelemetry container, the bridge

container, and a dataClay server container.

 4) Prometheus and Scaphandre

- Scaphandre: Container that monitors power usage (CPU frequencies, etc.) for energy-efficient

operation metrics.

- Prometheus: Scrapes metrics from Scaphandre and other sources, offering them to the

OpenTelemetry collector.

 5) Docker Compose Deployment

- A typical deployment scenario includes Docker Compose services for Scaphandre, Prometheus,

the dataClay OTLP Bridge, and optionally any pipeline for the OTLP collector.

- The environment is configurable so that you can enable or disable dummy collectors, adapt ports,

or store data in alternative volumes or remote dataClay services.

II.E.3 Usage demonstration

Figure references in this subsection show screenshots demonstrating each stage.

 1) Install Python (version 3.10 or higher): Make sure Python 3.10+ is installed on your system. You

can verify this by running:

python –version

 2) Create a Virtual Environment: Use your preferred environment manager (e.g., conda, venv, pyenv)

to create and activate a virtual environment. For example, using conda:

conda create -n icos-fl python=3.12

conda activate icos-fl

 3) Clone the Repositories: Clone both the ICOS-FL repository and the OTLP-dataClay bridge

repository:

git clone https://github.com/anaskalt/icos-fl.git

git clone https://production.eng.it/gitlab/icos/data-management/otlp-dataclay-bridge.git

 4) Copy Configuration Files: From the ICOS-FL repository, copy the new OpenTelemetry

configuration and the docker-compose.yml file (which includes Scaphandre and Prometheus) into

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 79 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

your working directory. This ensures that when you run docker compose up, all required services will

be spun up together.

 5) Launch the Docker Services: Navigate to the folder containing the new docker-compose.yml and

run:

docker compose up

This starts the containers for Scaphandre, Prometheus, OpenTelemetry, dataClay, and the OTLP

bridge.

a)

b)

Figure 40. Screenshots of the console output and the running containers during the FL process

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 80 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

 6) Build the ICOS-FL Package: Switch to a new terminal (while the Docker containers continue

running) and navigate to the ICOS-FL repository. Build the package by running:

./release.sh

a)

b)

Figure 41. Screenshots of the FL related build process steps and output

 7) Install the ICOS-FL Package: Once the build is complete, install it into your virtual environment:

pip install dist/icos_fl-<version>.tar.gz

Figure 42. Screenshot of the successful installation of the FL env

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 81 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

 8) Run the Server and Clients: For the example demonstration, open three additional terminals:

• Terminal 1 – t1: icos_fl server --config conf/settings.yaml -v

• Terminal 2 – t2: icos_fl client --config conf/settings.yaml -v

• Terminal 3 – t3: icos_fl client --config conf/settings.yaml -v

Figure 43. Console output from two clients (left – t2/t3), and server aggregating the updates

(right – t1).

 9) Completion of Federated Training: After the designated number of federated rounds (configured in

settings.yaml), the training and aggregation will conclude. The final aggregated model is stored

locally (e.g., in BentoML format to be compatible with the Intelligence coordination backend).

Figure 44. Logs indicating the completion of the FL training process – same terminals as in

Figure 43

With these steps, the ICOS-FL environment has been successfully launched, as well as its the data

ingestion pipeline (Scaphandre → Prometheus → OpenTelemetry → dataClay), and executed a simple

Federated Learning workflow.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 82 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

II.F AI Analytics – Load balancing model and experiments

Following the framework presented in Section 3.2.1 of D4.1, this document outlines the simulation

results for the proposed task offloading scheme. Specifically, assuming the same system model and

neural network structures as presented in Figures 10-12 of D4.1, this version describes the changes and

numerical results performed during IT-2 for implementing and testing the Decentralised Computation

Offloading scheme (DECOFFEE) for Energy Efficiency across ICOS cloud/edge layers [11].

The goal of this implementation was to extend the AI Analytics functionalities with a hybrid (i.e. both

horizontal and vertical offloading) computation offloading scheme via Distributed Deep Reinforcement

Learning (DDRL) [10]. In brief, DECOFFEE algorithm trains multiple autonomous DRL agents/models

(one per ICOS Agent or Node), aiming to ensure that, given computational task arrivals (i.e. user

applications), each agent selects where to run the task (i.e. locally, or to another ICOS edge node, or to

ICOS cloud layer) so as to minimise task computation delay (and energy consumption) and task drop

rate, considering deadlines across tasks.

II.F.1 Functional description

DECOFFEE is a framework that allows agents to decide dynamically between local processing,

horizontal offloading (to other edge agents), and vertical offloading (to the cloud). It ensures fair CPU

sharing for offloaded tasks, balancing workload distribution across the continuum to maximise system

performance and task completion rates. Functionally, DECOFFEE instantiates a DRL model at each

ICOS node for purposes of decision-making on incoming computational tasks.

The DRL functional architecture is shown in Figure 45, where each edge node agent receives as input

the accumulated information of local task features received and the load of all the other available ICOS

(edge/cloud) nodes via the ICOS Telemetry Controller. By inferencing the DRL model, each agent

finally decides where to offload the task.

Figure 45. The DRL interaction loop between a DECOFFE-based ICOS node and its env for

task offloading

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 83 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

II.F.2 Technical description

Since DECOFFEE requires high task traffic (i.e. multiple user application requests) to reveal

performance benefits, the training and testing phases of DECOFFEE were performed via

simulation analysis.

Implementation libraries: All AI/ML models were implemented in Python 3.x, using PyTorch library

(version 1.9.0), and the CUDA (version 10.2).

Optimal training convergence: The impact of the critical learning parameters on the training

performance were firstly assessed. The parameters of the simulation environment were set as tabulated

in Figure 46 [11].

Figure 46. Simulation parameters to train DECOFFEE DRL agents

Figure 47 initially shows the impact of the learning rate on the training convergence, which was tested

across a range of values. In general, the choice of learning rate plays a crucial role in balancing the speed

of convergence with the stability of the learning process, since it has a direct influence on how intensely

the neural model weights are adjusted during the back-propagation steps. The specific tuning of the

learning rate was set under moderate task arrival traffic across all DECOFFEE agents (P=0.5; task arrival

probability).

As presented in Figure 47a, where the learning curve of the DECOFFEE scheme across different

learning rates is depicted. As such, a joint minimisation of the task completion delay, energy

consumption, and task drop rate is guaranteed. The performance metric of HOODIE training is the

cumulative reward that was collected in a series of 5000 episodes and averaged across all the distributed

DECOFFEE agents [11]. Note that, since the task delay is considered a negative metric, the ideal value

is zero, which explains why the reward curves are negative and increasing.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 84 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 47. Experiment tracking and learning curves over training episodes in DECOFFEE

experiments

In Figure 47b, the impact of the discount factor is also demonstrated, where different reward curves for

varying values are shown. Stabilising the value of the discount factor may have generally serious impact

on the DRL policy convergence, since it directly regulates balance between immediate and future

rewards, the stability and speed of learning. Figure 47b shows that the optimal performance was

observed for the value of 0.99, which means that DECOFFEE agents exhibit more importance on future

rewards, making them more focused on long-term outcomes.

Comparative numerical analysis: Considering the best configuration of DECOFFEE scheme, a

comparative analysis was then performed, comparing the DECOFFEE against six baseline offloading

methods (Figure 48):

 Baseline 1 - Random Offloader (RO): Agents randomly choose between local execution, vertical

offloading, or horizontal offloading, with a random node selected as the destination.

 Baseline 2 - Full Local Computing (FLC): All tasks are processed locally by the agent.

 Baseline 3 - Vertical Offloader (VO): All tasks are offloaded to the Cloud node for computation.

 Baseline 4 - Horizontal Offloader (HO): Tasks are offloaded to another edge node, with destinations

selected randomly.

 Baseline 5 - Balanced Cyclic Offloader (BCO): Actions are selected cyclically (e.g., local, Cloud

node, edge node 1, edge node 2, etc.).

 Baseline 6 - Minimum Latency Estimation Offloader (MLEO): Agents estimate the queue delay for

all placement options (local, other edge nodes, or Cloud) and select the one with the lowest estimated

delay.

The comparison focuses on two performance metrics: average computation delay (which is proportional

to the energy consumption) and drop ratio, calculated over 200 validation episodes. For delay analysis,

tasks were allowed up to 10 seconds to stay in the system, highlighting the minimum delay for completed

tasks (Figure 48a-c). For drop ratio (Figure 48d-f), a stricter 2-second timeout was applied, measuring

the proportion of dropped tasks to total arrivals. Delay values are represented as negative to reflect their

adverse impact on task completion.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 85 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 48. Performance comparison of DECOFFEE against six offloading schemes under varying

conditions

(a) Average delay vs. task arrival probability; (b) Average delay vs. CPU computation capacity; (c)

Average delay vs. task timeout; (d) Drop ratio vs. task arrival probability; (e) Drop ratio vs. CPU

computation capacity; (f) Drop ratio vs. task timeout. Average delay is negative by convention

 The Impact of Task Traffic Intensity: Figure 48a shows the average delay as a function of task arrival

probability. As the probability increases, delays decrease across all schemes due to higher system

loads, with DECOFFEE consistently achieving the lowest delays. HO and VO perform well under

low task loads but exhibit significant delays at higher probabilities. MLEO is competitive at moderate

loads but falls behind HOODIE as probabilities approach 0.9. Figure 48d presents the drop ratio,

which rises with task arrival probability. DECOFFEE maintains the lowest drop ratios, demonstrating

its effectiveness under heavy loads, while FLC and HO show poor performance at high probabilities.

MLEO performs adequately at moderate loads but struggles in extreme conditions.

 The Impact of Computational Capacity: Figure 48b highlights the effect of local CPU capacity (3–7

GHz) on average delay. Increasing CPU capacity reduces delays across most schemes, with

DECOFFEE consistently achieving the lowest delays, particularly at higher capacities. MLEO also

performs well but less effectively than DECOFFEE at lower capacities, where offloading is critical.

Figure 48e shows drop ratios decrease with increasing CPU capacity. DECOFFEE achieves the most

significant reduction, especially at lower capacities, while FLC benefits from local computation but

remains less effective under heavy loads.

 The Impact of Task Timeout: Figure 48c shows that increasing task timeouts (9.6–10.4 seconds)

improves delays across all schemes. DECOFFEE achieves the lowest delays by optimising scheduling

dynamically, while FLC remains consistent due to exclusive local computation. MLEO performs

slightly worse than DECOFFEE, particularly under tighter deadlines. Figure 48f shows that extending

timeouts (1.6–2.4 seconds) reduces drop ratios, with HOODIE maintaining the lowest rates,

demonstrating its robustness under strict deadlines.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 86 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

II.G AI Analytics – Metrics forecasting and internal workflows in IT-2

Building on D4.1’s ARIMA-based CPU utilisation forecasting evaluated via MSE/MAE/MAPE, RMSE

[12], and having portability metrics such as the inferencing time, and RAM. IT-2 enhances the

Intelligence Layer coordination backend API with multivariate prediction.

 The AI analytics module now employs PyTorch LSTMs to forecast CPU and memory usage,

supporting both univariate and multivariate (simultaneous CPU/memory) approaches.

II.G.1 Functional description

In this version, the Intelligence Layer Coordination API extends its capabilities by introducing

multivariate forecasting for CPU and memory utilisation, alongside the existing univariate approach.

The API now integrates a refined mechanism to reference the updated LSTM-based models (trained on

PyTorch) stored in the AI analytics module.

These models predict both CPU and memory usage one step ahead using historical sequences, enabling

simultaneous multivariate prediction. This enhancement strengthens the ICOS resource allocation and

management techniques, allowing dynamic scaling decisions based on CPU/memory trends, rather than

isolated metrics.

II.G.2 Technical description

The training dataset was sourced from the ICOS Telemetry component via a Grafana dashboard,

capturing CPU and memory utilisation metrics across ICOS nodes over a minimum of two weeks,

recorded at 5-minute intervals in CSV format. Evaluation using Mean Absolute Error (MAE)

demonstrated that LSTM-based models outperformed other architectures (e.g., ARIMA, XGBoost) for

both univariate and multivariate forecasting tasks.

II.G.2.1 Model Training Workflow

 1) Data Retrieval & Preprocessing: The Export Metrics API retrieves raw telemetry data, which

undergoes preprocessing (cleaning, outlier removal, data normalisation, and feature selection).

 A configurable parameter defines the prediction type: univariate or multivariate. The data is then

reshaped into a time-series structure compatible with the selected model.

 2) Baseline Training Configuration: The default LSTM model employs a one-step-ahead forecasting

approach with an 80/20 train-test split.

 The Swagger API allows users to trigger training for univariate (ARIMA/XGBoost) or multivariate

(LSTM) models, leveraging time-series data from Grafana.

 3) Model Deployment & Storage: Pre-processed data is forwarded to the Intelligence Layer API

(backend), which trains the model and saves it to the AI repository with performance metrics and a

unique identifier.

 Model parameters and metadata are logged in an MLOps tool for traceability and future analysis.

 The Intelligence backend API subsequently serves forecasts using the trained model, accessible via

its assigned tag.

II.G.2.2 Prototype architecture

Data preprocessing pipelines, part of the Data Processing component, ensure consistent input quality

from distributed nodes, enabling the training of models to boost prediction accuracy. Agents or nodes

interact via an Export Metrics API, which initiates workflows where intelligence modules preprocess

data and dynamically route it to either univariate models or multivariate models. Both workflows

culminate in models being added to a centralised repository, accessed through a unified prediction API.

This API endpoint standardises interactions while serving predictions from any model, whether trained

for a single node or across multiple nodes.

This whole process enhances the system by integrating metrics documentation directly into Swagger,

improving API transparency and usability, as shown in Figure 49.

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 87 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Figure 49. Workflow of Metrics Collection, Forecasting, and Model Training in an

Onboarding App

A similar procedure is performed for prediction generation, as shown in Figure 50; when a newly

onboarded agent or node requires metrics predictions, it initiates a request through the Export Metrics

API, which collects and provides access to the relevant performance metrics, such as CPU and memory

usage.

The collected data is then processed and forwarded to the Intelligence Coordination backend API, which

leverages trained models to generate accurate and actionable predictions. This streamlined interaction

enables agents or nodes to make informed decisions based on real-time and forecasted system

performance.

Figure 50. Predictive Intelligence Flow for Metrics Forecasting

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 88 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

II.G.2.3 Description of components

As detailed in D4.1, the LSTM model for data training is developed within the PyTorch framework.

This model is subsequently deployed as a service utilising BentoML. The API facilitates a two-step

process:

 Model training: Users can train the model using their provided dataset. Upon successful training, the

model is securely stored within BentoML's model repository.

 Inference: The trained model is then exposed through a predict API. To generate predictions, the API

accepts scaled values of past CPU and Memory utilisation as input. The output comprises a single

predicted value for both future CPU and Memory utilisation.

II.H Technical specifications

This annex covers technical specifications of Intelligence Layer modules and functionalities.

II.H.1 Trustworthy AI module

Explainable AI

Description: This can be viewed using MLFlow UI by invoking the start_mlflow_ui() service

endpoint within the Intelligence Coordination API. This initiates an MLFlow UI instance, typically

running on port 5000, accessible via http://127.0.0.1:5000.

In the launched UI, locate and open the experiment containing model explanations. From there, click to

view the SHAP plots.

Dependencies: MLFlow (2.13.2), Python (3.10), BentoML (1.2.16)

Deployment: Packaged inside Intelligence Layer Docker container.

Prediction confidence scores

The technical stack is composed of the following:

Programming Language: Python 3.10

Framework: Scikit-learn (for model performance metrics) [27]

Deployment: The results are available while generating model predictions.

Model monitoring

This drift detection functionality is part of the Swagger API and can be activated as needed, providing

flexibility in monitoring and analysing data drift over time. As defined in Section 3.3.2.3, the API call

is defined as follows:

POST/detect_drift
Description: Identifies and returns a list of detected drifts in the provided data. The detect_drift API

call activates drift detection, employing statistical measures such as Jensen-Shannon Divergence to

identify shifts in predictions. The resulting drift metrics highlight how predictions evolve over time,

enabling users to detect critical issues such as performance degradation, concept drift, and input

distribution shifts.

Values:

- True: Activates drift detection

- False: Skips drift detection.

Required: Yes

Input: A Boolean (True or False) to indicate if drift detection should be applied into the present data.

Output: A structured response containing detected drift events.

http://127.0.0.1:5000/

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 89 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Federated Learning

The technical stack is composed of the following:

Programming Language: Python 3.10

Framework: Flower FL for orchestrating the Federated Learning process. PyTorch (for LSTM model

implementation)

Model Architecture: LSTM for time-series prediction of CPU usage, memory usage, and power

consumption.

Metrics Ingestion: Scaphandre → Prometheus → OpenTelemetry → dataClay pipeline.

Model Export: Final model stored in BentoML format.

Deployment: Docker Compose for local or distributed setups (multiple containers for Scaphandre,

Prometheus, dataClay OTLP Bridge, etc.).

Continuous Retraining: Supported. The training loop can be triggered at intervals depending on new

data availability or scheduled tasks.

II.H AI Analytics module

AIOps system – MLFlow

Description: The MLFlow UI can be launched by invoking the start_mlflow_ui() service endpoint

within the Intelligence Coordination API. This initiates an MLFlow UI instance, typically running on

port 5000, accessible via http://localhost:5000

Dependencies: MLFlow(2.13.2), Python(3.10), BentoML(1.2.16).

Deployment: Packaged inside Intelligence coordination Docker.

Model Compression

The quantisation and distillation features are configurable via a POST API endpoint

/core/analytics_train exposed through the AI coordination backend service (Intelligence API). Users

can submit training requests using either Swagger API documentation. The parameters are defined in

the request body under pytorch_model_parameters, which includes the following configurable fields:

{

"pytorch_model_parameters":

{ "hidden_size": 64,

"num_epochs": 50,ta

 "quantize": true,

"distill": false }

}

There are 3 possible scenarios for implementing quantisation:

 Quantisation (quantize: true): Dynamic quantisation from PyTorch’s native quantisation module17,

which is applied post-training after the model is fully trained in FP32.

 Distillation (distill: true): Trains two models concurrently: a teacher (larger) and a student

(smaller) by default. Uses a customisable distillation loss function.

 Combined Workflow (quantize: true distill: true): When both flags are enabled, the pipeline

first trains a distilled student model for higher accuracy. Applies dynamic quantisation after

distillation, producing a lightweight INT8 version of the tuned distilled model.

It is important to note that quantisation and distillation are mutually independent but can be combined

for a compressed yet accurate model. The final model artifact (INT8 or FP32) is stored in the

Intelligence Layer model registry for deployment.

17 https://pytorch.org/docs/stable/quantization.html#torch.quantization.quantize_dynamic

https://docs.bentoml.org/
https://docs.bentoml.org/
http://localhost:5000/
https://pytorch.org/docs/stable/quantization.html#torch.quantization.quantize_dynamic

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 90 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

II.I Delivery and usage

Deliverable D4.2 primarily focuses on package upgrades, notably for BentoML and MLFlow, to align

with the latest versions used in IT-1. Additionally, it introduces new packages to enhance explainability

and model monitoring capabilities. Importantly, the core API usage remains consistent with no

significant changes from the previous deliverable.

II.I.1 Package information

Table 8 represents the dependencies of the Intelligence Layer container for a successful deployment and

service.

Table 8. Intelligence Layer dependencies

Package name Version Package info

bentoml 1.2.16 https://github.com/bentoml/BentoML

dataclay icos-ai-dataclay https://github.com/bsc-dom/icos-ai-dataclay

mlflow 2.13.2 https://mlflow.org/docs/2.13.2/index.html

numpy >=1.15.0,<1.25.2 https://numpy.org/doc/stable/

pandas >=1.4.3,<2.0.0 https://pandas.pydata.org/docs/

seaborn >=0.11.2,<=0.12.2 https://github.com/mwaskom/seaborn

matplotlib 3.7.1 https://matplotlib.org/3.7.1/index.html

scikit-learn 1.2.2 https://scikit-learn.org/stable/whats_new/v1.2.html

notebook 6.5.1 https://docs.jupyter.org/en/latest/

xgboost 1.7.6 https://xgboost.readthedocs.io/en/stable/

tqdm 4.65.0 https://tqdm.github.io/

pydantic 1.10.10 https://docs.pydantic.dev/latest/

scipy 1.10.1 https://docs.scipy.org/doc/scipy/

river 0.14.0 https://riverml.xyz/0.14.0/

tensorflow 2.10.0 https://github.com/tensorflow/tensorflow/releases/tag

/v2.10.0

tflite 2.10.0 https://github.com/tensorflow/tflite-support/releases

tensorflow_hub 0.12.0 https://github.com/tensorflow/hub/tree/r0.12

tensorflow_datasets 4.7.0 https://github.com/tensorflow/datasets/tree/v4.7.0

https://github.com/bentoml/BentoML
https://github.com/bsc-dom/icos-ai-dataclay
https://mlflow.org/docs/2.3.2/index.html
https://numpy.org/doc/stable/
https://pandas.pydata.org/docs/
https://github.com/mwaskom/seaborn
https://matplotlib.org/3.7.1/index.html
https://scikit-learn.org/stable/whats_new/v1.2.html
https://docs.jupyter.org/en/latest/
https://xgboost.readthedocs.io/en/stable/
https://tqdm.github.io/
https://docs.pydantic.dev/latest/
https://docs.scipy.org/doc/scipy/
https://riverml.xyz/0.14.0/
https://github.com/tensorflow/tensorflow/releases/tag/v2.10.0
https://github.com/tensorflow/tensorflow/releases/tag/v2.10.0
https://github.com/tensorflow/tflite-support/releases
https://github.com/tensorflow/hub/tree/r0.12
https://github.com/tensorflow/datasets/tree/v4.7.0

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 91 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Package name Version Package info

tesnsorflow-model-

oprtimizations

0.7.3 https://github.com/tensorflow/model-

optimization/tree/v0.7.3

keras-turner 1.3.5 https://github.com/keras-team/keras-tuner/tree/v1.3.5

statsmodels 0.14.0 https://github.com/statsmodels/statsmodels/tree/v0.1

4.0

fastapi 0.93.0 https://github.com/fastapi/fastapi/tree/0.93.0

category_encoders 2.6.3 https://github.com/scikit-learn-

contrib/category_encoders/tree/2.6.3

shap 0.46.0 https://github.com/shap/shap/tree/v0.46.0

nannyml 0.9.0 https://github.com/NannyML/nannyml/tree/v0.9.0

torch 2.0.0 https://github.com/pytorch/pytorch/tree/v2.0.0

Additionally, the AI coordination frontend (Export metrics API) package dependencies are presented
in Table 9.

Table 9. Export Metrics dependencies

Package name Version Package info

aiorwlock 1.4.0 https://pypi.org/project/aiorwlock/

annotated-types 0.6.0 https://pypi.org/project/annotated-types/

anyio 4.3.0 https://pypi.org/project/anyio/

bcrypt 4.2.0 https://pypi.org/project/bcrypt/

cached-property 1.5.2 https://pypi.org/project/cached-property/

certifi 2024.7.4 https://pypi.org/project/certifi/

cffi 1.17.1 https://pypi.org/project/cffi/

charset-normalizer 3.3.2 https://pypi.org/project/charset-normalizer/

click 8.1.7 https://pypi.org/project/click/

colorama 0.4.6 https://pypi.org/project/colorama/

contourpy 1.3.0 https://pypi.org/project/contourpy/

cryptography 44.0.0 https://pypi.org/project/cryptography/

cycler 0.12.1 https://pypi.org/project/cycler/

dataclay 4.0.0 https://github.com/bsc-dom/icos-ai-dataclay

https://github.com/tensorflow/model-optimization/tree/v0.7.3
https://github.com/tensorflow/model-optimization/tree/v0.7.3
https://github.com/keras-team/keras-tuner/tree/v1.3.5
https://github.com/statsmodels/statsmodels/tree/v0.14.0
https://github.com/statsmodels/statsmodels/tree/v0.14.0
https://github.com/fastapi/fastapi/tree/0.93.0
https://github.com/scikit-learn-contrib/category_encoders/tree/2.6.3
https://github.com/scikit-learn-contrib/category_encoders/tree/2.6.3
https://github.com/shap/shap/tree/v0.46.0
https://github.com/NannyML/nannyml/tree/v0.9.0
https://github.com/pytorch/pytorch/tree/v2.0.0
https://pypi.org/project/aiorwlock/
https://pypi.org/project/annotated-types/
https://pypi.org/project/anyio/
https://pypi.org/project/bcrypt/
https://pypi.org/project/cached-property/
https://pypi.org/project/certifi/
https://pypi.org/project/cffi/
https://pypi.org/project/charset-normalizer/
https://pypi.org/project/click/
https://pypi.org/project/colorama/
https://pypi.org/project/contourpy/
https://pypi.org/project/cryptography/
https://pypi.org/project/cycler/
https://github.com/bsc-dom/icos-ai-dataclay

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 92 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Package name Version Package info

Deprecated 1.2.14 https://pypi.org/project/Deprecated/

deprecation 2.1.0 https://pypi.org/project/deprecation/

ecdsa 0.19.0 https://pypi.org/project/ecdsa/

fastapi 0.110.0 https://github.com/tiangolo/fastapi

fonttools 4.54.1 https://pypi.org/project/fonttools/

grpcio 1.66.2 https://pypi.org/project/grpcio/

grpcio-health-checking 1.66.2 https://pypi.org/project/grpcio-health-checking/

gunicorn 21.2.0 https://pypi.org/project/gunicorn/

h11 0.14.0 https://pypi.org/project/h11/

hiredis 3.0.0 https://pypi.org/project/hiredis/

httpcore 1.0.7 https://pypi.org/project/httpcore/

httpx 0.26.0 https://pypi.org/project/httpx/

idna 3.6 https://pypi.org/project/idna/

importlib_metadata 8.4.0 https://pypi.org/project/importlib-metadata/

jwcrypto 1.5.6 https://pypi.org/project/jwcrypto/

kiwisolver 1.4.7 https://pypi.org/project/kiwisolver/

matplotlib 3.9.2 https://matplotlib.org/

numpy 2.1.1 https://numpy.org/

opentelemetry-api 1.27.0 https://pypi.org/project/opentelemetry-api/

packaging 24.0 https://pypi.org/project/packaging/

pandas 2.2.3 https://pandas.pydata.org/

pillow 10.4.0 https://pypi.org/project/pillow/

prometheus_client 0.20.0 https://github.com/prometheus/client_python

protobuf 5.28.2 https://pypi.org/project/protobuf/

psutil 6.0.0 https://pypi.org/project/psutil/

pyasn1 0.6.1 https://pypi.org/project/pyasn1/

pycparser 2.22 https://pypi.org/project/pycparser/

pydantic 2.9.2 https://docs.pydantic.dev/

pydantic-settings 2.5.2 https://pypi.org/project/pydantic-settings/

https://pypi.org/project/Deprecated/
https://pypi.org/project/deprecation/
https://pypi.org/project/ecdsa/
https://github.com/tiangolo/fastapi
https://pypi.org/project/fonttools/
https://pypi.org/project/grpcio/
https://pypi.org/project/grpcio-health-checking/
https://pypi.org/project/gunicorn/
https://pypi.org/project/h11/
https://pypi.org/project/hiredis/
https://pypi.org/project/httpcore/
https://pypi.org/project/httpx/
https://pypi.org/project/idna/
https://pypi.org/project/importlib-metadata/
https://pypi.org/project/jwcrypto/
https://pypi.org/project/kiwisolver/
https://matplotlib.org/
https://numpy.org/
https://pypi.org/project/opentelemetry-api/
https://pypi.org/project/packaging/
https://pandas.pydata.org/
https://pypi.org/project/pillow/
https://github.com/prometheus/client_python
https://pypi.org/project/protobuf/
https://pypi.org/project/psutil/
https://pypi.org/project/pyasn1/
https://pypi.org/project/pycparser/
https://docs.pydantic.dev/
https://pypi.org/project/pydantic-settings/

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 93 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Package name Version Package info

pydantic_core 2.23.4 https://pypi.org/project/pydantic-core/

PyJWT 2.9.0 https://pypi.org/project/PyJWT/

pyparsing 3.1.4 https://pypi.org/project/pyparsing/

python-dateutil 2.9.0.post0 https://pypi.org/project/python-dateutil/

python-dotenv 1.0.1 https://pypi.org/project/python-dotenv/

python-jose 3.3.0 https://pypi.org/project/python-jose/

python-keycloak 3.9.1 https://pypi.org/project/python-keycloak/

pytz 2024.2 https://pypi.org/project/pytz/

PyYAML 6.0.2 https://pypi.org/project/PyYAML/

redis 5.1.0 https://pypi.org/project/redis/

requests 2.32.3 https://pypi.org/project/requests/

requests-toolbelt 1.0.0 https://pypi.org/project/requests-toolbelt/

rsa 4.9 https://pypi.org/project/rsa/

six 1.16.0 https://pypi.org/project/six/

sniffio 1.3.1 https://pypi.org/project/sniffio/

starlette 0.36.3 https://pypi.org/project/starlette/

typing_extensions 4.10.0 https://pypi.org/project/typing-extensions/

tzdata 2024.2 https://pypi.org/project/tzdata/

urllib3 2.2.2 https://pypi.org/project/urllib3/

uvicorn 0.28.0 https://pypi.org/project/uvicorn/

wrapt 1.16.0 https://pypi.org/project/wrapt/

zipp 3.20.2 https://pypi.org/project/zipp/

https://pypi.org/project/pydantic-core/
https://pypi.org/project/PyJWT/
https://pypi.org/project/pyparsing/
https://pypi.org/project/python-dateutil/
https://pypi.org/project/python-dotenv/
https://pypi.org/project/python-jose/
https://pypi.org/project/python-keycloak/
https://pypi.org/project/pytz/
https://pypi.org/project/PyYAML/
https://pypi.org/project/redis/
https://pypi.org/project/requests/
https://pypi.org/project/requests-toolbelt/
https://pypi.org/project/rsa/
https://pypi.org/project/six/
https://pypi.org/project/sniffio/
https://pypi.org/project/starlette/
https://pypi.org/project/typing-extensions/
https://pypi.org/project/tzdata/
https://pypi.org/project/urllib3/
https://pypi.org/project/uvicorn/
https://pypi.org/project/wrapt/
https://pypi.org/project/zipp/

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 94 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Finally, Table 10 represents FL dependencies for the Federated Learning service before its integration

with intelligence in IT-3. In the event of changing, these requirements will be updated in its pertinent

GitHub repository (ICOS-FL: https://github.com/anaskalt/icos-fl) and in D5.3 [8].

Table 10. ICOS FL dependencies

Package name Version Package info

icos_fl 0.1.0 https://github.com/anaskalt/icos-fl

flwr 1.4.0 https://pypi.org/project/flwr/

torch 2.0.1 https://pypi.org/project/torch/

torchvision 0.15.2 https://pypi.org/project/torchvision/

numpy 1.24.4 https://pypi.org/project/numpy/

pandas 2.0.3 https://pypi.org/project/pandas/

scikit-learn 1.3.0 https://pypi.org/project/scikit-learn/

matplotlib 3.7.1 https://pypi.org/project/matplotlib/

pyyaml 6.0.0 https://pypi.org/project/pyyaml/

psutil 5.9.5 https://pypi.org/project/psutil/

scipy 1.10.1 https://pypi.org/project/scipy/

II.I.2 Installation instructions

The installation instructions remain largely consistent with those described in deliverable D4.1.

However, the command to launch the Docker container has been modified to include additional

configurations. These configurations, specified via environment variables, allow for the setting of

resource limits and API timeouts for the containerised application.

As an example, the command to set the API timeout and allocate CPU and GPU resources is provided

below.

docker run --network host -it --rm -p 3000:3000 -p 5000:5000 -e

BENTOML_CONFIG_OPTIONS='api_server.traffic.timeout=600 runners.resources.cpu=0.5

runners.resources."nvidia.com/gpu"=0' analytics:btdpshel3oztswar serve

The above command would enable the ICOS Intelligence Layer Coordination API server to be launched

at http://0.0.0.0:3000, which could be accessed using any browser.

https://github.com/anaskalt/icos-fl
https://github.com/anaskalt/icos-fl
https://pypi.org/project/flwr/
https://pypi.org/project/torch/
https://pypi.org/project/torchvision/
https://pypi.org/project/numpy/
https://pypi.org/project/pandas/
https://pypi.org/project/scikit-learn/
https://pypi.org/project/matplotlib/
https://pypi.org/project/pyyaml/
https://pypi.org/project/psutil/
https://pypi.org/project/scipy/
http://0.0.0.0:3000/

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 95 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

II.I.3 Licensing information

Intelligence backend

This remains the same as described in deliverable D4.1.

Regarding the Intelligence Layer in the Controller suite, this section remains the same as described in

deliverable D4.1.

Intelligence frontend and federated learning functionality

Regarding the AI coordination frontend (Export Metrics API), as well as the ICOS Federated Learning

(FL), these are licensed under the Apache License 2.0. This allows for free usage, modification, and

distribution, provided that proper attribution is maintained and modifications are clearly stated.

Copyright © 2022-2024 National and Kapodistrian University of Athens.

II.I.4 Download

Table 11 lists the main Software packages covering the Intelligence Layer.

Table 11. Intelligence Software packages

Software Instructions

AI coordination backend &

Intelligence Layer (Controller suite)

This remains the same as described in deliverable

D4.1.

AI coordination frontend (Export metrics API) Available in ICOS GitHub:

https://github.com/icos-project/Metrics-Export

ICOS Federated Learning (FL) Code for the FL client/server initially available at:

https://github.com/anaskalt/icos-fl

https://github.com/icos-project/Metrics-Export
https://github.com/anaskalt/icos-fl

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 96 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Annex III: Security Layer

III.A Requirements

Table 12. ICOS requirements met with the IT-2 of the Sec. Layer Coordination and Sec. Scan modules

Requirem

ent ID

Requirement

Name

Description

SST_FR_06 Secure

infrastructure and

code

ICOS SHOULD assess security of infrastructure (e.g., running

Critical Security Controls - CIS benchmarks) and system and

application code (e.g. running vulnerability scanning of docker

images)

SST_FR_11 Compliance

detection

ICOS MUST provide a mechanism for the detection of

compliance problems regarding controls of specific standards

and/or specific policies and rules.

SST_FR_12 Compliance

enforcement

ICOS MUST provide a system to trigger infrastructure changes

to ensure standard and/or policy compliance

Table 13. ICOS requirements met with the IT-2 of the IAM module

Requirem

ent ID

Requirement

Name

Description

SST_FR_07 SecureAPI ICOS MUST provide API supporting AuthT/AuthZ and

Audit capabilities

SST_FR_08 SecureLIB ICOS SHOULD provide libraries supporting Authentication

/Authorisation to 3rd parties

OP_FR_09 Granularity of the

access

ICOS SHOULD provide the possibility to define different

roles in accessing to ICOS

Table 14. ICOS requirements met with the IT-2 of the Anomaly detection module

Requirement

ID

Requirement

Name

Description

SST_FR_09 Anomaly

detection

ICOS MUST provide a mechanism for the detection of

anomalies (e.g., any kind of abnormal situations, including

potential security threats, that is recorded in application,

system, or network logs) in the applications/services on the

cloud/network/edge provider

SST_FR_10 Anomaly

mitigation and

recovery

ICOS MUST be able categorise anomalies and recommend

specific mitigation actions or recovery process

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 97 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Table 15. ICOS requirements met with the IT-2 of the Audit module

Requirement

ID

Requirement

Name

Description

SST_FR_06 Secure

infrastructure and

code

ICOS SHOULD assess security of infrastructure (e.g.,

running Critical Security Controls - CIS benchmarks)

and system and application code (e.g. running

vulnerability scanning of docker images)

SST_FR_07 Secure API ICOS MUST provide API supporting AuthT/AuthZ and

Audit capabilities

SST_FR_11 Compliance

detection

ICOS MUST provide a mechanism for the detection of

compliance problems regarding controls of specific

standards and/or specific policies and rules.

SST_FR_12 Compliance

enforcement

ICOS MUST provide a system to trigger infrastructure

changes to ensure standard and/or policy compliance

Table 16. ICOS requirements met with the IT-2 of the Trust functionality

Requirement

ID

Requirement

Name

Description

SST_FR_01 Trust nodes ICOS SHOULD be able to provide mechanisms for

establishing trust procedures for the onboarding of

ICOS nodes and the deployment of applications.

SST_FR_02 Secure comms ICOS SHOULD be able to exploit available encryption

and isolation mechanisms to provide sufficient levels

of security at the cloud continuum level

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 98 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

III.B Example of IAM module configuration files

Figure 51. Example of dynamic_values.yaml

Figure 52. Example of static_values.yaml

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 99 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

III.C Delivery and usage

The following tables present package information on the Security Layer modules, with instructions how

to download and set them up, as well as relevant information regarding licensing.

 Table 17 presents relevant information for the Software packages concerning Security in IT-2.

 Table 18 presents relevant installations instructions per Security Layer module in IT-2.

 Table 19 lists licensing information relevant to each of the Security Layer modules in IT-2.

 Table 20 explains download instructions for each of the Security Layer modules in IT-2.

Table 17. Package information per module

Requirement ID Requirement Name

Security Layer

Coordination

No change since D4.1.

Security Scan No change since D4.1.

Identity and Access

Management

The Identity and Access Management module is packaged and

distributed using Docker containers. In addition, it is integrated as a

Helm chart in the ICOS Core Suite to provide an easily deployable and

configurable ready-to-use service integrated with the other services in

the ICOS Continuum

Anomaly detection Both the anomaly detection module as well as the anomaly detection

API-2 are packaged as Docker containers and can be installed and used

as such

Audit The audit component is packaged as a unified helm chart which

automatically installs Trivy, Tetragon and Prometheus exporter with all

their dependencies

Trust Step-ca is packaged as a Docker container, and it works natively with

Kubernetes.

 Cilium is a container network interface which is developed for

Kubernetes.

 Wireguard is present as a kernel module on recent Linux distributions.

Table 18. Installation instructions per module

Requirement ID Requirement Name

Security Layer

Coordination

No change since D4.1.

Security Scan module Wazuh server is installed in Kubernetes using the official Wazuh

Kubernetes manifest, that can be found here:

https://github.com/wazuh/wazuh-kubernetes.

This allows to install it in the cloud and local environments.

https://github.com/wazuh/wazuh-kubernetes
https://github.com/wazuh/wazuh-kubernetes
https://github.com/wazuh/wazuh-kubernetes

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 100 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Requirement ID Requirement Name

Identity and Access

Management
No change since D4.1.

Anomaly detection The anomaly detection API2 can be build and run as a Docker container

with the following commands:

LOMOS_API2_VERSION=0.0.1

docker build --build-arg "LOMOS_API2_VERSION=$LOMOS_API2_VERSION" -t lomos-
api2:$LOMOS_API2_VERSION .

docker run -it --name lomos-api2 --rm -p25001:25001 --env-file=.env lomos-
api2:$LOMOS_API2_VERSION

curl
"http://172.17.0.2:25001/api/top_anomaly?min_anomaly_score=0.7&from_timestamp=2024
-01-08T00:00:01.200000Z&to_timestamp=2024-01-18T00:00:01.200000Z"

Audit The Audit component can be installed using the dedicated helm chart

though the project’s repository:

$helm install tetragon-auditing/icos-auditing

Trust Step-ca components are installed from the official helm repository.

$ helm install step-certificates smallstep/step-certificates

$ helm install autocert smallstep/autocert

$ helm install step-issuer smallstep/step-issuer

Install Cilium with Wireguard encryption using Cilium CLI by

following:

 https://docs.cilium.io/en/stable/gettingstarted/k8s-install-default/

Enable Wireguard encryption:

$ cilium install --chart-directory ./install/kubernetes/cilium --set
encryption.enabled=true --set encryption.type=wireguard.

Table 19. Licensing per module and internal element in the Security Layer

Requirement ID Requirement Name

Security Layer

Coordination

No change since D4.1.

Security Scan The Wazuh is an open source, licensed with a modified GNU GPLv2

licence.

 Trivy is an open-source software under the Apache 2.0 licence

Identity and Access

Management

No change since D4.1.

Anomaly detection The Anomaly detection module is a proprietary software of XLAB.

 Anomaly detection API-2 is an open-source software under the

Apache 2.0 licence.

Audit Tetragon is open-source software under Apache 2.0 licence.

https://docs.cilium.io/en/stable/gettingstarted/k8s-install-default/

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 101 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Requirement ID Requirement Name

 Trivy is open-source software under Apache 2.0 licence.

Trust Step-ca is an open-source software under the Apache 2.0 licence.

 Cilium is an open-source project under the Apache 2.0 licence.

 Wireguard is licensed under GPLv2, as it's part of the Linux kernel.

Table 20. Download instructions per module and internal element in the Security Layer

Requirement ID Requirement Name

Security Layer Coordination The source code of the Security Layer Coordination API can be

downloaded or pulled from the project`s GitHub repository:

https://github.com/icos-project/Security-coordination-module

Security Scan The source code of Wazuh can be downloaded or pulled from the

official Wazuh GitHub repository:

 https://github.com/wazuh/wazuh

 The source code of Trivy can be downloaded or pulled from the

official Trivy GitHub repository:

 https://github.com/aquasecurity/trivy

Identity and Access

Management
 At the time of writing the deliverable, the source code of the

Identity and Access Management module can be downloaded or

pulled from the project’s development Gitlab repository:

 https://production.eng.it/gitlab/icos/security/iam

 The repository can be opened on invitation. To request access to

this repository, please contact:

 Mr. Gabriele Giammatteo (gabriele.giammatteo@eng.it)

Anomaly detection The source code of the Anomaly detection API-2 can be

downloaded or pulled from the project`s GitHub repository:

https://github.com/icos-project/lomos-api2

Audit The source code of Audit module can be downloaded or pulled from

the project’s GitHub repository:

https://github.com/icos-project/tetragon-auditing

Trust The source code of step-ca can be downloaded or pulled from the

official step-ca GitHub repository:

 https://github.com/smallstep/certificates

 The source code of Cilium can be downloaded or pulled from the

official Github repository:

 https://github.com/cilium/cilium

https://github.com/icos-project/Security-coordination-module
https://github.com/icos-project/Security-coordination-module
https://github.com/icos-project/Security-coordination-module
https://github.com/wazuh/wazuh
https://github.com/wazuh/wazuh
https://github.com/aquasecurity/trivy
https://production.eng.it/gitlab/icos/security/iam
https://github.com/icos-project/lomos-api2
https://github.com/icos-project/lomos-api2
https://github.com/icos-project/lomos-api2
https://github.com/icos-project/tetragon-auditing
https://github.com/smallstep/certificates
https://github.com/cilium/cilium

Document name: D4.2 Data management, Intelligence and Security Layers (IT-2) Page: 102 of 102

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

