

This document is issued within the frame and for the purpose of the ICOS project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070177. The opinions expressed and arguments employed

herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author’s view and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the ICOS Consortium. The content of all or parts of this document can be used and

distributed provided that the ICOS project and the document are properly referenced.
Each ICOS Partner may use this document in conformity with the ICOS Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g. web (Deliverables flagged as public will be automatically published in CORDIS

project’s page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the

Commission Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified

EU-S) EU SECRET under the Commission Decision No2015/444.

D3.3-Meta-Kernel Layer Module

Integrated IT-2

Keywords:

Cloud, Edge, IoT, MetaOS, development, integration

Document Identification

Status Final Due Date 28/02/2025

Version 1.0 Submission Date 28/02/2025

Related WP WP3 Document Reference D3.3

Related

Deliverable(s)

D3.1, D3.2, D2.4 Dissemination Level (*) PU

Lead Participant IBM Lead Author Kalman Meth

Contributors ATOS, NCSRD,

PSNC, L-PIT,

SUITE5, XLAB,

ENG, UPC, BSC,

TUBS, NKUA, CRF,

IBM

Reviewers XLAB, ATOS

Francesco D’Andria

(ATOS)

Hrvoje Ratkajec (XLAB)

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 2 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Francesc Lordan BSC

Alex Barceló BSC

Marc Michalke TUBS

Admela Jukan TUBS

Fin Gentzen TUBS

Marla Grunewald TUBS

Gabriele Giammatteo ENG

Maria Antonietta Di Girolamo ENG

Nikola Markovic ENG

Manuel Gallardo ATOS

Alberto Llamedo ATOS

Carlos Sánchez ATOS

Jordi Garcia UPC

Xavier Masip-Bruin UPC

Andreu Català UPC

Kalman Meth IBM

Kfir Toledo IBM

Menelaos Zetas NKUA

Anastasios Giannopoulos NKUA

Document History

Version Date Change editors Changes

0.1 20/12/2025 IBM First draft version of ToC.

0.2 27/01/2025 All Main content for all sections

0.3 03/02/2025 All Additional content for all sections

0.4 10/02/2025 BSC, IBM Added tracking of functionalities + cleanup

0.5 14/02/2025 BSC, IBM Adding missing tests information

0.6 16/02/2025 UPC, IBM Updated Application Descriptor

0.7 21/02/2025 BSC Address issues from internal review

0.8 28/02/2025 IBM Draft version for quality check

1.0 28/02/2025 ATOS Final version to be submitted

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 3 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Kalman Meth (IBM) 28/02/2025

Quality manager Carmen San Roman (ATOS) 28/02/2025

Project Coordinator Francesco D’Andria (ATOS) 28/02/2025

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 4 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ...2

Table of Contents ...4

List of Tables ..6

List of Figures ..7

List of Acronyms ..8

Executive Summary ...9

1 Introduction ..10

1.1 Purpose of the document ..10

1.2 Relation to other project work..10

1.3 Structure of the document ..10

2 Functionalities overview ..11

3 Application Manifest ..13

3.1 Application Model ...13

3.2 Overall structure of the application descriptor ...13

3.2.1 Components Section .. 13

3.2.2 Manifests ... 21

4 Meta-Kernel Layer Module Design ..22

4.1 Components ...22

4.1.1 Shell ... 22

4.1.2 Shell Backend .. 24

4.1.3 Lighthouse ... 24

4.1.4 Job Manager .. 25

4.1.5 Matchmaker ... 26

4.1.6 Policy Manager .. 27

4.1.7 Topology Exporter ... 29

4.1.8 Deployment Manager .. 31

4.1.9 ClusterLink .. 32

4.1.10 Orchestrator Edge Cloud ... 33

4.1.11 Distributed and Parallel Execution .. 33

4.1.12 Aggregator ... 34

4.1.13 Telemetry Controller ... 35

4.1.14 Telemetry Gateway .. 35

4.1.15 Telemetry Agent .. 35

4.1.16 Metrics Export API .. 36

4.2 Additional Comments on Integrated Solution ..36

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 5 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.2.1 Job Management .. 36

4.2.2 Job Deployment ... 38

4.2.3 Logging and Telemetry.. 40

4.2.4 Topology changes notification to the Application ... 41

5 Conclusions ..43

6 References ..44

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 6 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1 System Use Cases where the Meta-Kernel layer is involved .. 11
Table 2: Job Manager’s removed API Endpoints ... 25
Table 3: Job Manager’s new API endpoints ... 25
Table 4 Policy Manager API updates ... 29
Table 5: Topology Exporter API Endpoints .. 30
Table 6: Deployment Manager API endpoints .. 31

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 7 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1: The ICOS Meta-Kernel Layer ... 22
Figure 2: Shell interaction .. 23
Figure 3: Lighthouse Interaction .. 24
Figure 4 Matchmaking Interaction ... 26
Figure 5: Dynamic Policy Manager GUI, home ... 28
Figure 6: Dynamic Policy Manager GUI List of policies ... 28
Figure 7 ClusterLink interaction .. 32
Figure 8 Aggregator interaction ... 34
Figure 9 Rescheduling loop .. 38
Figure 10 Deployment Manager interactions ... 39
Figure 11 Logging and Telemetry technologies.. 40
Figure 12 Sequence diagram for notifying topology changes to application ... 41

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 8 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /

acronym

Description

API Application Programming Interface

CC Cloud Continuum

CL ClusterLink

CLI Command-Line Interface

CRD Custom Resource Definition (Kubernetes term)

CRUD Create/Read/Update/Delete

D&PE Distributed and Parallel Execution

DM Deployment Manager

DX.Y Deliverable number Y belonging to WP X

E2E End-to-End

EC European Commission

gRPC (Google) Remote Procedure Call

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ICOS IoT to Cloud Operating System

IT-x Development Iteration x

JM Job Manager

MM Match Maker

OCM Open Cluster Management (software)

OTLP OpenTelemetry Protocol

RBAC Role-Based Access Control

REST REpresentational State Transfer

SCA Security Configuration Assessment

SUC System Use Case

TA Telemetry Agent

TC Telemetry Controller

TE Topology Exporter

TG Telemetry Gateway

UI/UX User Interface/User Experience

URL Uniform Resource Locator

xDS x Discovery Service

WP Work Package

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 9 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

This document titled “D3.3 Meta-Kernel Layer Module Integrated (IT-2)” is a report on the final

iteration of the design, development, and implementation of ICOS Meta-Kernel Layer Module. It serves

as a key milestone in the project, consolidating the advancements made in previous phases and providing

a comprehensive overview of the module's integration readiness for Work Package 5 (WP5).

The report reviews the functionalities derived from the project’s requirements, detailing the

implementation status of each component in alignment with the overall system objectives. By building

upon the architectural foundation established in previous deliverables—“D2.4 - ICOS Architectural

Design (IT-2)” [2], “D3.1 Meta-Kernel Layer Module Integrated (IT-1)” [3], and “D3.2 Meta-Kernel

Layer Module Developed (IT-2)” [4]—this document offers deeper insights into the internal

implementation and integration of the Meta-Kernel components.

To foster collaboration, transparency, and wider adoption, the code for the ICOS Meta-Kernel Layer

Module is released as open-source on the project's official GitHub repository (https://github.com/icos-

project). It is distributed under a non-viral license, ensuring that developers and organizations can freely

integrate, modify, and extend the module without restrictive obligations.

https://github.com/icos-project
https://github.com/icos-project

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 10 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This document provides a detailed report on the final iteration of the design, development, and

implementation of the ICOS Meta-Kernel Layer Module. It complements the publicly available code,

which has been released on the project's official GitHub repository (https://github.com/icos-project),

and is ready for integration into Work Package 5 (WP5). As a key milestone in the project, this report

consolidates progress from previous phases, offering a comprehensive overview of the module’s current

state, functionality, and integration readiness.

1.2 Relation to other project work

This document uses results of earlier documents: “D2.2 ICOS Architectural Design (IT-1)” [1], “D2.4

ICOS Architectural Design (IT-2)” [2], “D3.1 Meta-Kernel Layer Module Integrated (IT-1)” [3], and

“D3.2 Meta-Kernel Layer Module Integrated (IT-2)” [4]. Changes and additions from these previous

documents are recorded in this document.

1.3 Structure of the document

The content in this document is divided in 4 major chapters:

Chapter 2 describes in a nutshell the goals achieved by the Meta-Kernel layer. It recalls all the

functionalities that the Meta-Kernel layer module was expected to deliver and describes the current

status of their implementation.

Chapter 3 presents the Application Manifest that is used to describe an application to ICOS. This is the

basic data structure that is provided to the ICOS System to enable it to perform its distributed

deployment.

Chapter 4 presents the components of the Meta-Kernel layer of the ICOS System and how they work

together to achieve deployment across multiple clusters.

Chapter 5 wraps up the document and extracts some conclusions.

https://github.com/icos-project

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 11 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

2 Functionalities overview

Chapter 3 of Deliverable D2.2 [1] analysed the ICOS System from a user perspective, identifying key

functionalities expected by users and breaking them down into fundamental interactions that provide

tangible benefits. Each identified basic functionality was mapped to a corresponding System Use Case

(SUC). Table 1 gathers those System Use Cases where the Meta-Kernel layer module is wholly or

partially responsible for the implementation of the described functionality and presents the final status

of its implementation.

Table 1 System Use Cases where the Meta-Kernel layer is involved

ID System Use Case Description Status

Continuum Management

SUC_CC_1 Node On-

Boarding

Allows to add a new node to an ICOS

Cloud Continuum

Achieved

SUC_CC_3 Configure Node Allows to specify the required

configuration to ensure that the new

node can join the CC

Achieved

SUC_CC_4 Join the Cloud

Continuum

Allows to make the new node start

communicating with other nodes in the

Cloud Continuum

Achieved

SUC_CC_5 Visualize Cloud

Continuum

Topology

Allow the user to graphically visualize

the topology of a Cloud Continuum

Achieved

SUC_CC_6 Install and

Configure ICOS

Discovery

Service

Allows to set-up a new Discovery

Service for an ICOS Cloud Continuum

Achieved

Runtime Management

SUC_RT_1 Define

Application

Allows the definition a new application

and all the details for its deployment

Achieved

SUC_RT_2 Define

Application

Deployment

Descriptor

Allows to describe the deployment of an

application (e.g., services and

interconnections between them)

Achieved

SUC_RT_3 Define

Application

Requirements and

Policies

Allows to define a set of non-functional

requirements and policies that ICOS

should optimize while running the

application

Achieved

SUC_RT_4 Deploy

Application

Allows to deploy an application in an

ICOS Instance

Achieved

SUC_RT_5 Deploy in a

different or

multiple

Controllers

Allow to deploy the application in an

ICOS instance composed of multiple

Controllers based on user requirements

and matchmaking results

Pending

SUC_RT_6 See Application

Logs and Status

Review the status and the logs of all the

application components

Achieved

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 12 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

SUC_RT_7 See Application

and Resources

Performance Data

See and query the performance metrics

related to the resources that are hosting

the application and the metrics

generated by the application itself

Achieved

SUC_RT_8 Review Events

and Alerts

Review all the events and alerts

generated from the runtime, security,

and intelligence layer about the

application optimization

Achieved

SUC_RT_9 Apply suggested

deployment

optimizations

Apply suggestions generated by the

system to optimize the deployment of

the application

Achieved

SUC_RT_10 Apply recovery

actions

Apply recovery actions generated by the

system

Achieved

SUC_RT_11 Delete

Application

Un-deploy and remove an application Achieved

With the exception of SUC_RT_5, the Meta-Kernel layer successfully supports all defined System Use

Cases. The Application Manifest, introduced in Chapter 3, facilitates the definition of new applications

by specifying deployment details, including service configurations and interconnections, while also

enabling runtime optimization policies (SUC_RT_1, SUC_RT_2, and SUC_RT_3). The remaining Use

Cases are implemented through interactions between various components of the layer, as outlined in

Chapter 0. Many of these interactions have been previously documented in architecture deliverables

(D2.2 [1] and D2.4 [2]) and in reports on the Meta-Kernel implementation (D3.1 [3], D3.2 [4]). Section

4.2 provides updates on selected interactions and details their final implementation status.

Despite discussions and the design of support for multiple Controllers, as detailed in Deliverable D2.4

[2], SUC_RT_5 was not implemented. The development efforts were prioritized towards the

implementation of the other System Use Cases, which were deemed more critical for the overall

functionality of the Meta-Kernel layer. As a result, while the conceptual framework for SUC_RT_5

exists and is described in Section 4.10 of D2.4 [2], its implementation was not completed.

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 13 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

3 Application Manifest

ICOS is a technology agnostic Meta Operating System. This section defines the minimalist syntax

required to provide ICOS with an agnostic Application Descriptor manifest to run on the ICOS system.

The Application Manifest serves as a critical input to the Meta-Kernel layer since it defines the

application's components, the dependencies among them and the policies that will drive its deployment.

Although the Application Manifest was already introduced in D3.1 [3] Section 4.2.2, its syntax has

undergone significant changes to accommodate the new functionalities of the layer.

3.1 Application Model

An application is made of a set of components and the interactions between them. Different entities that

do not make sense separately (for instance a Deployment and the Service exposing it) should be defined

as part of the same component. Therefore, they will run in the same resources (which could be a list of

nodes in the same cluster). The service exposes the deployed component to facilitate communication

with other components of the application.

Note that having two manifests that have requirements in the same component does not make sense,

because in fact we created the component so that we can group together entities that do not need

computational resources with entities that need them. (Aka. Docker compose does this grouping and

calls it a service).

3.2 Overall structure of the application descriptor

The application descriptor has three mandatory sections: components, dependencies and manifests as

shown in the example from Snippet 1.

name: uc4-app-emds

description: "the description"

components:

 - name: house-component

 type: docker

 manifests:

 - name: house-manifest

dependencies:

 # producer/consumer components information

manifests:

 # List of manifests in the specified format

Snippet 1: Example of the mandatory sections for the application descriptor

3.2.1 Components Section

Components are application objects that can be executed at different nodes of the continuum. For each

component, we need to specify the following details:

 name: The component’s name.

 type: The orchestration engine for which the manifests are prepared (Kubernetes, Docker or both).

 manifests: A list of manifests belonging to this component.

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 14 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

There are different cases to define the application components, each with specific manifests describing

how to deploy the component on a different orchestration engine. Below are the examples of different

cases.

Case 1: Two components with kubernetes type (single manifest each), as shown in Snippet 2. In

this case, Kubernetes nodes will be selected for both the components.

name: my application

description: "The description of application"

components:

 - name: component-1

 type: kubernetes

 manifests:

 - name: comp-1-manifest

 - name: component-2

 type: kubernetes

 manifests:

 - name: comp-2-manifest

Snippet 2: Example of manifest with two kubernetes-type components

Case 2: Two components with docker type (single manifest each) as shown in Snippet 3. In this case,

Docker nodes will be selected for both the components

name: my application

description: "The description of application"

components:

 - name: component-1

 type: docker

 manifests:

 - name: comp-1-manifest

 - name: component-2

 type: docker

 manifests:

 - name: comp-2-manifest

Snippet 3: Example of manifest with two docker-type components

Case 3: Two components with mixed types (kubernetes, multiple) as shown in Snippet 4. The

"multiple" type indicates that both, Kubernetes and Docker, manifests are provided for that specific

component. However, if one of the component types is kubernetes, the rest of the component will

be deployed on a Kubernetes cluster. It is not allowed to mix component types.

name: my application

description: "The description of application"

components:

 - name: component-1

 type: kubernetes

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 15 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

 manifests:

 - name: comp-1-manifest

 - name: component-2

 type: multiple

 manifests:

 - name: comp-2-manifest-kubernetes

 - name: comp-2-manifest-docker

Snippet 4: Example of a manifest with a component with multiple types

Case 4: Two components with multiple type (two manifest each) as shown in Snippet 5. In this example,

component-1 and component-2 are both flexible and can be deployed either on Kubernetes or on

Docker nodes.

name: my application

description: "The description of application"

components:

 - name: component-1

 type: multiple

 manifests:

 - name: comp-1-manifest-kubernetes

 - name: comp-1-manifest-docker

 - name: component-2

 type: multiple

 manifests:

 - name: comp-2-manifest-kubernetes

 - name: comp-2-manifest-docker

Snippet 5: Example of manifest with many components with multiple type

The components section includes the list of components and two optional fields: Requirements and

Policies.

3.2.1.1 Requirements

Requirements section specifies the requested resources for the application. It can apply to the entire

application, in which case the section will appear at the same level as the components, or to individual

components, in which case it will be specified under the component it applies to. Note that the former

option has not been considered. As each component may have different resource requirements and

specifying requirement per component level allows to allocate most suitable resources rather than

applying a uniform allocation The latter option, where the requirements are specified inside each

component, is considered as shown in the example in Snippet 6.

name: my_application

description: "my app description"

components:

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 16 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

 - name: component-1

 type: kubernetes

 manifests:

 - name: comp-1-manifest

 requirements:

 architecture: intel

 cpu: 0.5

 memory: 200Mi

 nodelabel:

 key: node-label-key

 values:

 - node-label-robot1

 - node-label-robot2

 devices: squat.ai/video

Snippet 6: Example of a manifest indicating the requirements for a component

Accepted requirements are:

 architecture: intel/x86_64 or arm64/aarch64

 cpu: number of cpu cores requested.

 memory: amount of memory requested; the unit can be specified (following Kubernetes syntax).

 devices: devices that are necessary to be present for the component to run.

 nodelabel: often the component is intended to run on specific nodes of the ICOS system (e.g., specific

robots, specific houses, specific cars…). In this case a (key, value) pair can be specified to identify

the nodes. The value can be a list of nodes, which implies that replicas of the component will be

deployed in all of the specified nodes.

A note on defining the requirements for the ICOS header: In Kubernetes, the smallest deployable units

of computing are the Pods, so resources are allocated to Pods, whereas in ICOS the resource allocation

unit is the component. Since each container has its own resource needs, the user (application developer)

needs to abstract (add up) the needs of each container (which can be part of a workload management

controller such as Deployment, ReplicaSet, Job in Kubernetes, etc) that belong to the same component.

Similarly, if a component contains several manifests, each with its own list of requirements, the

requirements for each manifest should be merged in the header, as shown in the example from Snippet

7.

manifests:

 - name: comp-1-manifest-1

 manifest:

 apiVersion: apps/v1

 kind: Deployment

 metadata:

 name: busybox-1

 namespace: demo

 labels:

 app: busybox-1

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 17 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

 spec:

 selector:

 matchLabels:

 app: busybox-1

 template:

 metadata:

 labels:

 app: busybox-1

 spec:

 containers:

 - name: busybox-1-container

 image: busybox-1

 command: ["sleep", "100"]

 resources:

 requests:

 cpu: "0.5"

 memory: "2Mi"

manifests:

 - name: comp-1-manifest-2

 manifest:

 apiVersion: apps/v1

 kind: Deployment

 metadata:

 name: busybox-2

 namespace: demo

 labels:

 app: busybox-2

 spec:

 selector:

 matchLabels:

 app: busybox-2

 template:

 metadata:

 labels:

 app: busybox-2

 spec:

 containers:

 - name: busybox-2-container

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 18 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

 image: busybox-2

 command: ["sleep", "100"]

 resources:

 requests:

 cpu: "0.5"

 memory: "3Mi"

Snippet 7: Example of manifest with a component with multiple manifests each with its own

requirements

The implications of placing two manifests in the same component is that their requirements will be

merged, and a suitable target will be searched that matches ALL the requirements from both manifests.

Therefore, it is understood that if two manifests can run apart from each other, they should belong to

different components so that the matchmaking process has more options.

Enforcement of requirements (scheduling or runtime): When are requirements taken into account? In

the current version, they are considered only at scheduling time. However, some of the requirements

could also be monitored and enforced at runtime. In any case, the remediation action to take would be

defined by ICOS (i.e. migrate).

3.2.1.2 Policies

Policies are more dynamic than requirements. They are rules that can be defined by the user. Like

requirements, policies can be defined inside a component or outside if they apply to all applications.

The syntax for the policies section is presented in Snippet 8.

policies:

 - name: policy-name

 type: policy-type

Snippet 8: Syntax of the policies section

The rest of the dictionary entries depend on the type of policy. Supported types are:

 Security: Defines security requirements.

 Scheduler: Specifies scheduling strategies.

 Custom: User-defined policies for runtime.

Snippet 9 illustrates an example of a security-type policy.

policies:

 - name: securitypolicyexample

 type: security

 level: low # or medium or high

 remediation_action: none # or migrate

Snippet 9: Example of definition of a security-type policy

In this type of policy, the “level” value specifies the minimal security level for the application to run:

low, medium or high. The system will define the thresholds. The different security level determines

how hardened an ICOS node is against potential threats. The security level of an ICOS node is evaluated

using the SCA (Security Configuration Assessment) metric. The most secure node is the one with the

highest SCA score (an integer ranging from 0 to 100). This policy is considered both during scheduling

and at runtime.

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 19 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

Those policies with type “scheduler” - e.g., the policy defined in -- are checked during scheduling

and defines the scheduling strategy to drive the deployment of the components.

policies:

 - name: scheduling-scoring

 type: scheduler

 performance: 0.5

 energy: 0.3

 security:0.2

Snippet 10: Example of the definition of ascheduler-type policy

Additionally, custom policies can be defined by the user for instance to consider application-specific

metrics. In this case, the metric and remediation action are provided by the user, as shown in Snippet

11, and the system verifies it at runtime.

policies:

 - name: my-policy

 type: custom

 fromTemplate: compss-under-allocation

 remediation: scale-up

 variables:

 thresholdTimeSeconds: 120

 compssTask: provesOtel.example_task

Snippet 11: Example of the definition of a custom-type policy

More details about the fields of the policy are provided in the Annex section 1.1.2.12 of the deliverable

D3.2 [4].

3.2.1.3 Communication

This section of the application descriptor specifies relationships between components of the application,

as shown in example in Each component has:

 outgoing: which specify the service the component provide to another component.

 incoming: which specify the service that the component depends on from another component.

name: HelloworldClusterlink

description: "Helloworld application to test clusterlink"

components:

 - name: hello

 type: kubernetes

 manifests:

 - name: hello-deployment

 - name: hello-configmap-script

 communication:

 - incoming: world-svc

 - name: world

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 20 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

 type: kubernetes

 manifests:

 - name: world-deployment

 - name: world-configmap-script

 - name: world-configmap-requirements

 - name: world-svc

 communication:

 - outgoing: world-svc

Snippet 12. It outlines how the interactions between components need to be defined in terms of

communication between them (which is necessary if the components run in different clusters, so that

ClusterLink can be set up). Each component needs to define its communication needs within its

definition. This information will also be used during scheduling to find a more accurate allocation.

Each component has:

 outgoing: which specify the service the component provide to another component.

 incoming: which specify the service that the component depends on from another component.

name: HelloworldClusterlink

description: "Helloworld application to test clusterlink"

components:

 - name: hello

 type: kubernetes

 manifests:

 - name: hello-deployment

 - name: hello-configmap-script

 communication:

 - incoming: world-svc

 - name: world

 type: kubernetes

 manifests:

 - name: world-deployment

 - name: world-configmap-script

 - name: world-configmap-requirements

 - name: world-svc

 communication:

 - outgoing: world-svc

Snippet 12: Example of the definition of a component communication

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 21 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

3.2.2 Manifests

The following types of manifests are supported:

 docker: A Docker compose manifest.

 kubernetes: A Kubernetes manifest.

 multiple: Means both Kubernetes and dcompose manifests are provided. This gives more

flexibility to the ICOS system to schedule the components on any resource, regardless of the

orchestration engine. Whereas if a component is specified type kubernetes, it can only be

scheduled on Kubernetes clusters.

Snippet 14 illustrates how to create ICOS header from docker compose manifest depicted in Snippet 13.

It is important to note that, in the current ICOS implementation, it is not allowed to mix component

types. That is, if one of the components is of type kubernetes, the rest should be either

kubernetes or multiple. In this case, the application will be scheduled on Kubernetes clusters.

manifests:

 - name: comp-1-manifest

 manifest:

 version: '3.8'

 services:

 frontend:

 image: example/webapp

 deploy:

 resources:

 reservations:

 cpus: '0.5'

 memory: 200M

Snippet 13: Manifest implementing a component using docker compose

components:

 - name: component-1

 type: docker

 manifests:

 - name: comp-1-manifest

 requirements:

 cpu: 0.5

 memory: 200M

manifests:

 - name: comp-1-manifest

 manifest:

 # Docker compose manifest like the one contained in Snippet 13

Snippet 14: Example of components section using the docker compose manifest in Snippet 13

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 22 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4 Meta-Kernel Layer Module Design

As shown in Figure 1 (a merged and updated version of Figures 6 and 13 presented and discussed in

D2.4 [2]), the Meta-Kernel Layer is now present in both the ICOS Controller and the ICOS Agent.

This chapter focuses on the functionalities and interactions of the ICOS components and it concentrates

on the changes and additions from previous documents D3.1 [3], D3.2 [4], and D2.4 [2].

For each component, we describe the basic functionality including interactions with other components,

we point to other documents (e.g. D2.4, D3.1, D3.2) where more details are available, we indicate how

testing was performed, the public repository where the code can be found and the license applied to it.

4.1 Components

4.1.1 Shell

The ICOS Shell consists of two different interfaces that a user can use to interact with the ICOS system.

These are namely the Command Line interface (CLI) and the graphical user interface (GUI). Both use

the ICOS Lighthouse as a reference point to obtain the address of an ICOS controller and then connect

to this controller’s API to issue further commands. While different in their appearance, they both utilize

the same endpoints of the Shell Backend.

The respective Shell Client also takes care of managing the user’s authentication by saving the auth

token and attaching it to every request, allowing for proper authorization and authentication through all

ICOS components.

Figure 1: The ICOS Meta-Kernel Layer

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 23 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

The following figure shows all currently possible interactions of the Shell Client and Shell Backend

with all connected components, except for the Lighthouse.

Figure 2: Shell interaction

4.1.1.1 Testing and Validation

Shell Client is tested through unit tests at build time as well as integration tests after every major change

to the code.

4.1.1.2 Code

The code of the Shell component can be found within the backend in the Shell repository of the ICOS

Github: https://github.com/icos-project/Shell. The component is released under the Apache license 2.0.

https://github.com/icos-project/Shell

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 24 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.1.2 Shell Backend

As shown in the diagram of the previous section, the Shell Backend offers interactions with the

components Job Manager, Aggregator and Metrics Exporter of the Intelligence API as well as Keycloak1

for authentication management. The Shell Backend exposes a single API with dedicated API endpoints

that define possible interactions with these components and then forwards the calls to the corresponding

component endpoints.user api.

Depending on the responsible component, the Shell Backend forwards the respective requests to the

appropriate microservice. Furthermore, the Shell Backend regularly connects to the Lighthouse in a

keepalive manner to update its registration. Running as a containerized application, the Shell Backend

supports configuration through either a configuration file, environment variables, or a mixture of both.

Outside of these externally provided settings, the Shell Backend itself remains fully stateless, moving

all state management tasks to the Shell Client. A full list of all API endpoints and available

functionalities has been provided in D3.2 [4].

4.1.2.1 Testing and Validation

Shell Backend is tested through unit tests at build time as well as integration tests after every major

change to the code.

4.1.2.2 Code

The code of the Shell Backend component can be found within the backend in the Shell repository of

the ICOS Github: https://github.com/icos-project/Shell . The component is released under the Apache

license 2.0.

4.1.3 Lighthouse

The Lighthouse acts as a controller repository storing the addresses of all registered controllers and

removing inactive ones. Any device or client can then use this repository to retrieve a list of available

controller addresses to connect to. Controllers need to be authorized to add their address to the

Lighthouse. If they remain inactive for more than a configured timeout, they are removed from the list.

Since the Lighthouse shares the same code base as the Shell Backend, the configuration mechanisms

remain the same. The API endpoints have been described in D3.1 [3].

Figure 3: Lighthouse Interaction

1 https://www.keycloak.org/

https://github.com/icos-project/Shell
https://www.keycloak.org/

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 25 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.1.3.1 Testing and Validation

Lighthouse is tested through unit tests at build time as well as integration tests after every major change

to the code.

4.1.3.2 Code

The code of the Lighthouse component is published in the lighthouse-registration-service repository

within ICOS’ Github: https://github.com/icos-project/lighthouse-registration-service. The component is

released under the Apache license 2.0.

4.1.4 Job Manager

The Job Manager serves as a persistence level meta-orchestrator. It receives new applications and

operates to collect the allocation for each of the jobs, passing the information into a database. It offers

different endpoints to allow other components to obtain information about the jobs and manage them

according to business needs. It serves as the main source of truth for the Deployment Managers (see

Section 4.1.8) which collect jobs and apply according to the results from the allocator.

4.1.4.1 API Endpoints

The list of API endpoints was first introduced in Section 2.2.5.1 from D3.1 [3], and extended during IT-

2 as described in Section 2.1.4 from D3.2 [4]. For this last version, the previously defined endpoints (in

Table) are no longer supported and are replaced by the ones in Table.

All URIs are relative to http://${CONTAINER_ADDRESS}

Table 2: Job Manager’s removed API Endpoints

Endpoint HTTP Method Request Body Description

/jobmanager/resources/status/{

job_uuid}

GET Get resource status

/jobmanager/resources/status/ PUT Resource entity and

condition

Update resource status

/jobmanager/jobs/executable/{

orchestrator}/{owner_id}

GET Get job by state

Table 3: Job Manager’s new API endpoints

Endpoint HTTP Method Request Body Description

/jobmanager/status/{job_id} GET Get resource status

/jobmanager/status/ PUT Json with job or

jobgroupid entity and

newstatus

Update resource status

/jobmanager/jobs/executable/

{orchestrator}/{agent_id}

GET Get job by state

https://github.com/icos-project/lighthouse-registration-service

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 26 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.1.4.2 Testing and Validation

The Job Manager has been developed using interfaces to facilitate mocking of specific resources. It has

a set of unit tests that can be run with the standard tooling of golang programming language. Apart from

that, the main validation were conducted by port-forwarding the resources from the testbed, to be

capable of detecting issues in the local run of the service. The validation then was checked with a

helloworld application following the application description of the project. In case of specific integration

tests, a custom helloworld application was developed and tested in the same way with port-forward

connectivity to the staging testbed.

4.1.4.3 Code

The source code of the JobManager is publicly available in the job-manager repository of the project’s

Github: https://github.com/icos-project/job-manager. The component is released under the Apache

license 2.0.

4.1.5 Matchmaker

The Matchmaker gets the application descriptor YAML file from the Job Manager and calls the

aggregator to get the ICOS topology (JSON). It extracts the resources required for each component of

the user application, matches them with available resources and finds the best possible solution. It then

responds to the Job Manager for the deployment of applications on targeted nodes as shown in the Figure

4.

Figure 4 Matchmaking Interaction

The Matchmaker algorithm remains the same as described in D3.2 [4] with the following steps and an

additional rescheduling functionality.

1. Filtering

2. Scoring

3. Affinity

4. SelectBest

5. Rescheduling

Matchmaking also considers the policies defined by users in the policies section of the ICOS application

header. Matchmaking evaluates user demands, such as specifying preferences for performance (e.g.,

50%), security (e.g., 30%), and energy consumption (e.g., 20%). This information is utilized by the

scoring algorithm to prioritize node selection based on the user’s specific preferences.

https://github.com/icos-project/job-manager

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 27 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.1.5.1 Testing and Validation

The matchmaking algorithm is tested using an integration test to validate the integration of different

steps inside the matchmaking i.e., filtering, scoring, affinity, select-best and rescheduling.

The integration test combines multiple functionalities:

 Read the application descriptor (YAML) and convert it to JSON.

 Reading the topology data (JSON).

 Execute the matchmaking logic, producing accurate results for target node selection based on the

requirements.

4.1.5.2 Code

The repository Match-Making of ICOS’ public Github (https://github.com/icos-project/Match-Making)

contains the implementation of the service and algorithm of the Match-maker. The component is

released under the Apache license 2.0.

4.1.6 Policy Manager

As reported in the deliverable “D2.2 ICOS Architecture Design (IT-1)” [1], the role of Policy Manager

(aka Dynamic Policy Manager) is the management of the policies (technical and business performance)

and the detection and prediction of violations of such policies in the running application.

Mainly, Policy Manager interacts with:

 Monitoring and Logging component for the creation and sending of the policy (configured to the

Monitoring and Logging component) and

 Job Manager: it notifies the Policy Manager each time an application undergoes actions such as

creation, stopping, starting, updating, or deletion. Specifically, as reported in section 2.2.2.1 of the

deliverable D3.2 [4] the integration of the policies is part of the functionalities of the Job Manager.

The Policy Manager component has been implemented during IT-2, according to the design previously

described in D3.1 [3] and D3.2 [4].

No improvements or functionalities are implemented in the last period about the integration of the Policy

Manager (PM) with the other ICOS components. The main achievements about the integration with the

other ICOS components of this module are implemented in the IT-2 and provided in section 3.3.1 and

section 3.3.2 of the deliverable “D3.2 Meta-Kernel Layer Module Developed (IT-2)” [4].

In the last period of the project, the focus of the activity concerns PM GUI. The implementation of the

GUI started in the IT-2 and the first version of it has been provided in the section 3.3.3, GUI, “D3.2

Meta-Kernel Layer Module Developed (IT-2)” [4])

The scope of the PM GUI is to have a user-friendly access to the policies.

The main achievements for the PM GUI (Figure 5 and Figure 6) pertain to the following functionalities

(more details are reported in the deliverable D5.3 [6]):

 Activate / Deactivate Policies

A new feature allows logged-in users to activate or deactivate an existing policy directly from the

GUI. This action is integrated with the Policy Manager backend and updates the policy status

accordingly.

 Policy Deletion

Users can now delete a policy from the GUI. A confirmation dialog ensures the user is aware of the

permanent removal.

 Policy Update

Users can edit the thresholds and the variables of an existing policy.

https://github.com/icos-project/Match-Making

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 28 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

 Enhanced User Feedback

Success and error notifications have been introduced to provide immediate visual feedback when

creating, deleting, or modifying (activating/deactivating) policies.

 Refined Keycloak Integration

Building upon the initial Keycloak integration, the GUI now clearly differentiates guest (read-only)

and user (privileged) modes, ensuring only authorized users can modify or delete policies.

 Improved UI / UX

Light/Dark mode toggle for better user experience under different lighting conditions. Tooltips on

action icons (view, activate/deactivate, delete) for clarity.

 Cleaner Codebase & Configurability

Streamlined code structure (custom hooks for notifications, enhanced error handling).

Figure 5: Dynamic Policy Manager GUI, home

Figure 6: Dynamic Policy Manager GUI List of policies

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 29 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.1.6.1 API Endpoints

With respect to the previous reports, the only relevant changes in the API of the component are reported

in Table 4. All URIs are relative to http://${CONTAINER_ADDRESS}.

Table 4 Policy Manager API updates

Endpoint HTTP

Method

Request Body Description

/registry/api/v1/icos/app POST App descriptor

and violation

notifications

endpoint

Starts monitoring a new application

/registry/api/v1/policies/{id} PUT Stops monitoring an application

4.1.6.2 Testing and Validation

The Policy Manager component has a CI/CD pipeline that includes multiple testing phases executed for

each commit in the code base. The tests are of four types:

 code formatting and linting: checks code formatting and guidelines (e.g. Dockerfile and Helm file

linting, secrets in the code);

 code quality: checks the quality of the code using SonarQube agents. This step assesses the overall

quality of code in many different areas (e.g. readability, maintainability, security);

 Vulnerability Scanning of generated Docker Images using Trivy;

 Unit tests based on PyTest. Currently the test suite comprises 46 tests.

In addition, during the development manual REST APIs tests and integration tests are executed using

the project's testbeds.

4.1.6.3 Code

The source code and tests for the Policy Manager are publicly accessible at the dynamic-policy-manager

repository of the Github of ICOS: https://github.com/icos-project/dynamic-policy-manager.

4.1.7 Topology Exporter

The Topology Exporter is a new component incorporated to the architecture of the Meta-Kernel layer.

Its purpose is to notify application-level containers about events related to the deployment of the

application. Thus, application components can react to those events and change their configuration. This

is especially needed for distributed computing libraries with no automatic resource discovery. An

example of this kind of library is the distributed and parallel execution component. Its agent-based

runtime system orchestrates the execution of many tasks on top of a distributed infrastructure; however,

the neighbouring agents must be manually set up by the application deployer.

Rather than keeping an internal representation of the topology of each application and updating it upon

being notified of the elements deployed or undeployed for each application, the Topology Exporter

periodically obtains the topology of the system from the Aggregator. Upon receiving the response for

the topology query, the Topology Exporter parses its content to discover the list of deployed elements

corresponding to each component of each monitored instance of the application. When the whole

https://github.com/icos-project/dynamic-policy-manager

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 30 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

response has been parsed, the list of elements is published through a Zenoh2 bus so that any application

subscribed onto it can be notified about changes in its topology.

Instead of discovering applications and components during the parsing of the response and notifying all

of them, the component does some filtering of this information and monitors only some specific

applications. In order to start/stop monitoring an application, the Topology Exporter offers a REST API

consisting of three methods:

4.1.7.1 API Endpoints

All URIs are relative to http://${CONTAINER_ADDRESS}

Table 5: Topology Exporter API Endpoints

Endpoint
HTTP

Method
Request Body Description

/ GET Healthcheck test

/applications/ GET List of monitored applications

/applications/{app_id} PUT Application Manifest Starts monitoring a new application

/applications/{app_id} DELETE Stops monitoring an application

4.1.7.2 Testing and Validation

The Topology Exporter component contains several unit tests to verify its proper behavior. To facilitate

the verification of the component, the other component of the Meta-Kernel layer on which the Topology

Exporter depends (Aggregator) has been mocked and a new service that is able to return a pre-made

topology has been developed. Upon a query for the status of the infrastructure, this mocked aggregator

reads the desired status of the testbed from a file; therefore, by dynamically changing the content of the

file, we can simulate the status of the infrastructure.

The unit tests for the component starts a docker compose that starts and creates several containers: 1)

the mock Aggregator, 2) the Topology Exporter, 3) all the necessary containers to deploy Zenoh acting

as the bus to report topology changes to the application, and 4) several containers emulating a deployed

application. These application containers subscribe to the bus for notifications on a specific application

deployment and component, and whatever notification is received is printed to the standard output.

The conducted test deploys this testing infrastructure and submits several requests to the Topology

Exporter, so it starts monitoring several applications. Once the test has been set up, it continues by

changing several times the file read by the mock Aggregator, and, on every change, it checks the logs

of the application containers to verify that they received the desired notifications.

4.1.7.3 Code

The source code and tests for the Topology Exporter are publicly accessible at the dynamic-policy-

manager repository of the Github of ICOS: https://github.com/icos-project/topology-exporter. The

component is released under the Apache license 2.0.

2 https://github.com/eclipse-zenoh/zenoh

https://github.com/icos-project/topology-exporter
https://github.com/eclipse-zenoh/zenoh

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 31 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.1.8 Deployment Manager

The Deployment Manager collects jobs from the Job Manager and acts by deploying them when the

status of the job is “executable”. There are two different Deployment Managers depending on the target

orchestration that the job is intended for: Open Cluster Manager (OCM) and Nuvla.

The OCM Deployment Manager acts over the executable jobs for the OCM orchestrator and uses the

OCM resources to propagate deployments under a specific OCM orchestrator. For this it uses the

resource Manifestwork3 which uses standard Kubernetes resources. The Deployment Manager consists

of one container with two different executables, one that periodically checks for synchronization and

execution of jobs (sidecar) and another that actually implements the deployment with OCM wrapper

functions.

The Nuvla Deployment Manager translates ICOS deployment jobs into application and deployment

definitions that can be processed by the Nuvla orchestrator. Once the deployment is set to the START

state, the NuvlaEdge Agent running on the edge node detects the new deployment and applies it within

the local cluster.

4.1.8.1 API Endpoints

All URIs are relative to http://${CONTAINER_ADDRESS}

Table 6: Deployment Manager API endpoints

Endpoint
HTTP

Method

Request

Body
Description

/deploymanager GET Home route

/deploymanager/healthz GET Healthcheck test

/deploymanager/execute/ GET Execute jobs

/deploymanager/status/ GET Get Status

/deploymanager/status/sync GET Sync Status

4.1.8.2 Testing and Validation

A mock for the Job Manager has been created that helps implementing the appropriate methods for

deploying OCM resources. The status sync feature involved several parts, so the validation was

performed in a similar way locally by port forwarding some necessary ports from the staging testbed.

4.1.8.3 Code

The code implementing each flavor of the Deployment Manager is located in a different repository of

the ICOS Github.

The Nuvla Deployment Manager is in the deployment-manager-nuvla repository:

https://github.com/icos-project/deployment-manager-nuvla. The driver is released under the Apache

license 2.0.

The code for the OCM driver and its sidecar container can be respectively found at the ocm-description-

service (https://github.com/icos-project/ocm-description-service) and ocm-description-sidecar

(https://github.com/icos-project/ocm-description-sidecar). Both ocm-driver components are released

under the Apache license 2.0.

3 https://open-cluster-management.io/docs/concepts/work-distribution/manifestwork/

https://github.com/icos-project/deployment-manager-nuvla
file://///VBoxSvr/Ubuntu/projects/ICOS/owncloud/ICOS/WP3%20–%20Development%20of%20the%20Distributed%20Meta-kernel%20Layer%20Module/Deliverables/D3.3/(https:/github.com/icos-project/ocm-description-service
https://github.com/icos-project/ocm-description-sidecar
https://open-cluster-management.io/docs/concepts/work-distribution/manifestwork/

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 32 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.1.9 ClusterLink

ClusterLink simplifies the connection between services that are located in different domains, networks,

and cloud infrastructures. ClusterLink runs on Kubernetes-enabled clusters. The ClusterLink

deployment operator allows easy deployment of ClusterLink to a Kubernetes cluster.

ClusterLink setup operations (create, deploy, delete) are performed during cluster deployment using the

ClusterLink CLI command. Once the ClusterLink operator is deployed on a cluster, operations (peer,

export, import, policies) are performed through Custom Resource Definition objects (CRDs). The

creation and manipulation of CRDs is done through the Kubernetes API. ICOS components (e.g.

Deployment Manager) identify which services need to be exported/imported in a cluster, and apply the

appropriate CRDs to perform the export/import operations.

Figure 7 ClusterLink interaction

Details of the design of how ClusterLink works can be found in D3.2 [4] Section 3.1.1 and

https://clusterlink.net/docs/latest/concepts/.

Examples of the CRD formats can be found at https://clusterlink.net/docs/main/tasks/operator/.

4.1.9.1 Testing and Validation

The ClusterLink project has a CI/CD pipeline that runs tests for each commit. The testing includes three

types:

1. Code Format: This step checks for strict code formatting and runs linter checks to preserve the

correct style, thus removing style warnings and errors in the project.

2. Unit Tests: ClusterLink's unit tests are based on the Go testing framework, enabling fast checks

for specific units such as the ClusterLink operator, ClusterLink control plane controllers

(authorization, XDS, CRDs), ClusterLink dataplane controllers, the policy agent, and various

utilities used by ClusterLink components.

https://clusterlink.net/docs/latest/concepts/
https://clusterlink.net/docs/main/tasks/operator/

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 33 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

3. End-to-End (E2E) Tests: The ClusterLink project runs E2E tests to verify the correctness of

the system. This framework uses Kind4 and the testify/suite package, a testing library for Go, to

test different end-to-end scenarios, such as CLI commands, ClusterLink operators, correct usage

of CRDs, proper implementation of the policy agent for access control rules, and various load

balancing scenarios. Additionally, the ClusterLink project performs performance tests to ensure

that the local environment is not negatively impacted and can handle high-speed traffic.

4.1.9.2 Code

The code of the component is available at https://github.com/clusterlink-net/clusterlink. The component

is released under the Apache license 2.0.

4.1.10 Orchestrator Edge Cloud

This component is external to ICOS. It acts as an aggregator and orchestrator service of the Cloud and

Edge resources. It provides cloud and edge device management and application orchestration

capabilities on top of the resources it aggregates. For more details see D3.1 [3] section 2.2.11. The

project uses two different orchestrators: OCM and Nuvla.

Open cluster management (OCM) works as a centralized reference for Kubernetes resources using

Manifestwork. With the internals of OCM, any edge cluster will pull resources and apply them when

reading Manifestwork in the corresponding namespace. The OCM handshake warrantees that there are

no leaks of important cluster information by utilizing Kubernetes RBAC mechanisms.

Nuvla translates ICOS deployment jobs into application and deployment definitions that can be

processed by the Nuvla orchestrator. Once the deployment is set to the START state, the NuvlaEdge

Agent running on the edge node detects the new deployment and applies it within the local cluster.

4.1.11 Distributed and Parallel Execution

The purpose of the component is to parallelize and distribute the workload of an application. Each

application container runs a process (the D&PE Agent) providing a REST API that allows requesting

the execution of a function or python script and managing the resources onto which its workload can be

offloaded. The API of the component offered to application developers remains the same as described

in D3.1 [3] Section 2.2.8.1.

Additionally, in order to automatically discover the resources onto which a D&PE Agent can offload

tasks, the component has been extended with a sidecar process that subscribes to a specific topic on

Zenoh. Through this subscription, this process expects to receive a description of the topology of the

application with information of which pods have been deployed on each cluster. After receiving this

information, this sidecar process checks the current configuration of the Agent and finds out which

pods/services have been newly added to the deployment and which currently configured nodes have

been removed from the deployment. Any of these changes is notified through the REST API of the

D&PE Agent to reconfigure the pool of resources onto which the Agent can offload tasks to distribute

the workload.

4 https://kind.sigs.k8s.io/

https://github.com/clusterlink-net/clusterlink
https://kind.sigs.k8s.io/

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 34 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.1.11.1 Testing and Validation

The Distributed and Parallel Execution component undergoes several unit tests as already described in

D3.1 [3] Section 4.2.3. Additionally, a new test has been added to verify that the component is able to

react to the notifications arriving from the Zenoh bus. Using a docker compose, this test raises a

container that pushes through the bus several different topologies. The test verifies that every time that

a new topology is pushed through the bus, the resource pool of the D&PE agent has been modified

accordingly.

4.1.11.2 Code

The code of the Distributed and Parallel Execution component is available in ICOS’ dp-exec repository:

https://github.com/icos-project/dp-exec. The component is released under the Apache license 2.0.

4.1.12 Aggregator

The Aggregator service provides a comprehensive knowledge of the resource infrastructure of the ICOS

ecosystem. This information includes both static and dynamic properties such as available computing

resources, performance, availability, eco-efficiency and peripheral hardware.

It is implemented as a web service written in Go language, exposing an API called by the Matchmaking

service. The response of the Aggregator is given following the ICOS Infrastructure Taxonomy,

describing the characteristics of the ICOS infrastructure. This infrastructure taxonomy, as outlined in

D3.1 [3] Annex 6.1.5, has remained consistent with no significant changes since its initial description.

To get this information, the service queries the Telemetruum Hub (Thanos) component to retrieve

telemetry data and restructure it according to the ICOS taxonomy.

The interaction of these components is described as the following flow diagram:

Figure 8 Aggregator interaction

In IT-2, the logging, debugging and error handling of the Aggregator were improved through a code

refactoring that eases the development, deployment and maintenance process of the service.

More details about the Aggregator may be found in Deliverables D2.4 [2] and D3.1 [3].

4.1.12.1 Testing and Validation

The testing carried out for the component includes functional and integration testing to verify the correct

functionalities of the service and its interactions with other ICOS components. Additionally, the output

of the Aggregator was validated against the ICOS Testbed to ensure consistency with the actual state of

the infrastructure.

https://github.com/icos-project/dp-exec

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 35 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.1.12.2 Code

The repository Aggregator of ICOS’ public Github (https://github.com/icos-project/Aggregator)

contains the source code implementing the Aggregator. The component is released under the Apache

license 2.0.

4.1.13 Telemetry Controller

The role of the telemetry controller is to store data and provide interfaces to query and visualise it; it

runs in the ICOS Controller (see Figure 1). Further details about the implementation are provided in

Section 2.1.16 of the deliverable D3.2 [4]. No significant changes have occurred since then.

4.1.13.1 Testing and Validation

The Telemetry module has a CI/CD pipeline that includes multiple testing phases executed for each

commit in the code base. There are mainly three types of tests:

 code formatting and linting: checks code formatting and guidelines (e.g. Dockerfile and Helm file

linting, secrets in the code);

 code quality: checks the quality of the code using the SonarQube agents. This step assesses the overall

quality of code on many different areas (e.g. readability, maintainability, security);

 Vulnerability Scanning of generated Docker Images using Trivy.

In addition, during the development manual REST APIs tests and integration tests are executed using

the project's testbeds. Unit testing is not extensively used for this component mainly because a) the

majority of modules are composed from third-party software and b) given the extremely distributed

nature of the component, the effort required to properly isolate single functionalities mocking other

modules to create proper unit tests was judged not convenient for the project.

4.1.13.2 Code

The source code of the Telemetry Controller is available at ICOS’ Telemetry-Controller repository:

https://github.com/icos-project/Telemetry-Controller.

4.1.14 Telemetry Gateway

The Telemetry Gateway exposes an API to receive metrics from the Telemetry Agents using the

OpenTelemetry Protocol (OTLP) format through HTTP and gPRC. The same protocols are used to send

data to the Telemetry Controllers. The Telementry Gateway remained the same as in IT-2, with further

details provided in Section 2.1.15, of the deliverable D3.2 [4].

4.1.14.1 Testing and Validation

Concerning testing, for the Telemetry Gateway the same type of tests described for the Telemetry

Controller component in section 4.1.13.1 have been applied.

4.1.14.2 Code

The code of the component has been released in ICOS public repository (https://github.com/icos-

project/telemetry-gateway). The component is released under the Apache license 2.0.

4.1.15 Telemetry Agent

The role of the Telemetry Agent is to collect data from the system and the applications and to send it to

the Telemetry Controller; it runs in the infrastructure nodes.

The Telemetry Agent remains the same as in IT-1, D3.1 [3], with one key architectural change: the

Telemetry Agent now sends data to the new Telemetry Gateway instead of directly to the Telemetry

Controller. At the implementation level, additional metrics and plugins have been introduced in the IT-

2, with further details provided in section 2.1.14 of the deliverable D3.2 [4].

https://github.com/icos-project/Aggregator
https://github.com/icos-project/Telemetry-Controller
https://github.com/icos-project/telemetry-gateway
https://github.com/icos-project/telemetry-gateway

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 36 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.1.15.1 Testing and Validation

Concerning testing, for the Telemetry Agent the same type of tests described for the Telemetry

Controller component in section 4.1.13.1 have been applied.

4.1.15.2 Code

The code of the Telemetry Agent is published in the Telemetry-Agent (https://github.com/icos-

project/Telemetry-Agent) and Telemetruum-Agent (https://github.com/icos-project/Telemetruum-

Agent) repositories within ICOS’ Github. The code of both parts is released under the Apache license

2.0.

4.1.16 Metrics Export API

The Metrics Export API extends ICOS with advanced monitoring and predictive analytics capabilities

by integrating real-time telemetry data with machine learning-based forecasting. It acts as a bridge

between telemetry sources (Prometheus, Thanos, Grafana) and the Intelligence Layer, enabling dynamic

metric creation, predictive analytics, and model training. The API facilitates automated metric tracking,

allowing system components to react proactively to workload variations and anomalies.

By leveraging the ICOS Aggregator and Intelligence Layer, the Metrics Export API supports static

metric provisioning for system-wide monitoring and dynamic metric generation based on application-

specific requirements. This ensures that infrastructure-level metrics (e.g., CPU, Memory, Energy

consumption) and predictive models (e.g., load forecasting, anomaly detection) are seamlessly

integrated into the ICOS ecosystem.

Authentication and access control are managed through Keycloak5, ensuring secure interactions between

components. More details on the architecture, API workflows, and integrations with ICOS telemetry

and intelligence modules can be found in D4.2 [5].

4.2 Additional Comments on Integrated Solution

4.2.1 Job Management

The Job Manager component is the core module of the ICOS Controller. It is responsible for

comprehensive runtime management, encompassing control, persistence, and coordination among ICOS

components. This integration ensures that all job-related processes are efficiently orchestrated within

the ICOS framework, supporting overall reliability and coherence.

The Job Manager comprehensive lifecycle management CRUD operations (Create, Read, Update,

Delete) ensure the consistent and efficient execution of Jobs. These operations oversee the state of

individual Jobs within the ICOS ecosystem, thereby maintaining system integrity and performance. By

managing the Job lifecycle, the Job Manager ensures that Jobs transition smoothly through various states

while adhering to the specified policies and requirements. This structured approach to job execution

enhances the adaptability and responsiveness of the ICOS architecture, fostering a more integrated and

automated operational environment.

The integration with the Policy Manager component is a critical aspect of the Job Manager’s

functionality. The Job Manager notifies the Policy Manager each time an application undergoes actions

such as creation, stopping, starting, updating, or deletion. This notification mechanism ensures that all

policy-related considerations are continuously monitored and enforced throughout the application

lifecycle.

5 https://www.keycloak.org/

https://github.com/icos-project/Telemetry-Agent
https://github.com/icos-project/Telemetry-Agent
https://github.com/icos-project/Telemetruum-Agent
https://github.com/icos-project/Telemetruum-Agent
https://www.keycloak.org/

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 37 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

Additionally, the Job Manager plays a key role in responding to policy non-compliance detected by the

Policy Manager. Upon receiving a non-compliance request, the Job Manager initiates a remediation

process by updating the job’s status with the necessary metadata required by the Deployment Manager

to take appropriate action. These actions may include modifying job parameters, triggering scaling

operations, applying security measures, or reallocating deployments to optimize system performance.

To facilitate communication, the Job Manager provides a callback response URL in case of non-

compliance, ensuring prompt and structured handling of policy violations.

By actively responding to policy violations, the Job Manager ensures compliance across the ICOS

environment, strengthening its resilience and adherence to predefined operational standards.

4.2.1.1 Enforcement of policies

The orchestration of an application is adapted based on system conditions and events using pre-defined

policies. This integration involves the Job Manager, Dynamic Policy Manager, and the Logging and

Telemetry subsystem. When a new application is deployed, the Job Manager calls the Dynamic Policy

Manager, which parses the Application Descriptor and activates the relevant policies based on data

collected at the edge. It also sets up alerting rules to notify when the data does not meet the policy

conditions. During runtime, the Dynamic Policy Manager receives notifications if metrics from the edge

application violate the established rules. If a violation occurs, it informs the Job Manager, which then

takes actions (e.g., migrating the application or scaling it) to restore compliance with the policies.

The enforcement of policies has been implemented during IT-2. During the last period no improvements

or functionalities are implemented; the details of this component are described in Section 2.2.6,

Enforcement Policies, of the deliverable D3.2 [4].

4.2.1.2 Component rescheduling

After the successful deployment of the application by the Job Manager through Deployment Manager,

the Policy Manager monitors the current targeted nodes for policy violations (e.g., a node’s security

score violation). If a violation is detected, this information (component with node name) is sent to the

Job Manager. The Job Manager notifies the Matchmaker about the execution of rescheduling (migration

of component to feasible node), providing the following details:

 Current setup of the deployed application components.

 Details of the violated components and nodes.

 The original application Yaml file.

The Matchmaker then reschedules the targeted node based on the updated information from the Job

Manager. The rescheduling loop, as described in the flow diagram Figure 9, covers the process from

initial deployment to rescheduling.

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 38 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

Figure 9 Rescheduling loop

4.2.2 Job Deployment

The Deployment Manager in the ICOS project plays a central role in managing the deployment of user

applications within the edge-to-cloud continuum. It is responsible for interfacing with the Job Manager

to retrieve and execute deployment jobs based on predefined rules and conditions. Unlike other

components in the system, the deployment manager does not expose any HTTP endpoints but rather

operates in a pull-based mode, consuming jobs from the Job Manager interface.

Once a job is retrieved, the Deployment Manager processes and validates it before executing it within

the Orchestrator Edge Cloud. The job must meet specific state and locking conditions for execution,

ensuring synchronization and consistency within the ICOS deployment workflow. This approach

enables dynamic and automated deployment orchestration across heterogeneous infrastructures,

supporting various technologies and deployment environments.

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 39 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

Figure 10 Deployment Manager interactions

4.2.2.1 Interaction with underlying orchestrators

The Deployment Manager interacts with underlying orchestrators such as Open Cluster Management

(OCM) and Nuvla, which are responsible for managing Docker and Kubernetes-based clusters and

edge/cloud resources. It works by pulling deployment jobs from the Job Manager and then depending

on the underlying orchestrator type (OCM or Nuvla), the Deployment Manager:

OCM:

translates ICOS deployment jobs into ManifestWork objects can be processed by the OCM orchestrator.

Once the ManifestWork is created, the Open Cluster Management Agent running on the edge node

detects the new deployment and applies it within the local cluster.

Nuvla:

translates ICOS deployment jobs into application and deployment definitions that can be processed by

the Nuvla orchestrator. Once the deployment is set to the START state, the NuvlaEdge Agent running

on the edge node detects the new deployment and applies it within the local cluster.

This mechanism ensures that deployments are effectively managed and monitored in distributed

environments. The interaction with these orchestrators allows ICOS to support scalable and flexible

application deployments across various computing environments. This enables a seamless execution on

both cloud and edge resources. The ICOS Deployment Managers for OCM and Nuvla are written in

Golang and Python correspondingly.

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 40 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.2.2.2 Multi-Cluster Setups

In the cases where applications running on different clusters (typically in the edge-to-edge scenario)

need to connect to each other, the continuum should be able to provide the corresponding overlay

networking options as well as the applications discovery possibilities. In the project this is achieved

using ClusterLink developed by IBM. The solution works on Kubernetes only.

The action of setting up of the cluster-to-cluster connections using ClusterLink is done during the edge

onboarding process. This includes the decision on how clusters could connect on the network level (e.g.,

one of the clusters can reach the other via IP:PORT; a relay can be used (e.g., VPN), etc.) and then

deploying the ClusterLink components on each of the clusters and letting them establish the peer

connections. After the multi-cluster setup is done, the deployment of the applications by the Deployment

Managers takes into account the pre-created cluster mesh and works on the level of the

exporting/importing the corresponding services required by the applications. For the details on the

ClusterLink deployment and operation see section 4.1.9.

4.2.3 Logging and Telemetry

The main achievements are implemented in the IT-2 and provided in the Section 2.2.5 of the deliverable

D3.2 [4]. Specifically, the Figure 10 of the deliverable D3.2 [4] and provided below (Figure 11) shows

the main technologies integrated to realize the telemetry components:

Figure 11 Logging and Telemetry technologies

During the last period, the Telemetruum6 Leaf Exporter component has been updated to improve the

stability and report additional data (e.g., node geographical location, custom labels, workloads statuses).

6 Telementruum Leaf is the software module that implements the Telemetry Agent architectural component:

https://www.icos-project.eu/docs/Concepts/Functionalities/observability/.

https://www.icos-project.eu/docs/Concepts/Functionalities/observability/

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 41 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

4.2.4 Topology changes notification to the Application

The sequence diagram in Figure 12 illustrates how the ICOS Meta-Kernel layer notifies applications so

they can react and be reconfigured automatically when there is any change on the deployment of the

application.

Distributed applications may span across multiple clusters, either under the domain of one single

controller or many. Although we could implement a protocol to share this information directly among

ICOS Agents, potential race conditions during the deployment of the containers may complicate the

solution. A simpler alternative to this coherence protocol is to control this information at the Controller

level.

Within the Controller, there are two potential sources from where to obtain this information. The first

option is that every time that the Job Manager orders the deployment of some component, it notifies the

change to the application. However, if there’s any error during the deployment, the information may be

inconsistent. The second source of information that can be used is the Aggregator which gathers all the

information collected through the telemetry infrastructure. Despite the delay for gathering the data, if

the information is in the Aggregator, the components have already been deployed. Our solution

leverages the information from the Aggregator.

Figure 12 Sequence diagram for notifying topology changes to application

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 42 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

The Aggregator is a reactive component; it collects the data and responds to queries done by other

components; therefore, it won’t be aware of any changes in application deployments. In order to

overcome this lack of proactiveness of the Aggregator a new component has been added to the ICOS

Controller: the Topology Exporter. This component queries the application topology from the

Aggregator and notifies the application about its current configuration.

To reduce the number of applications whose topology is being monitored, the Job Manager lets the

Topology Exporter know when a new application is being deployed so it starts monitoring. Likewise,

when the user requests to stop an application, it also notifies the Topology Exporter, so it stops

monitoring the application deployment.

For exposing metaOS level information at application level, we created a data bus where the Topology

Exporter publishes the deployed elements. Not all the applications require to know the topology of its

deployment. Thus, it makes sense that application changes are only notified on a subscription basis.

When a container of an application requiring to know that information starts, it can subscribe to a

specific topic on this bus to receive the notifications.

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 43 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

5 Conclusions

The ICOS project successfully concluded the development and integration of the ICOS Meta-Kernel

Layer module. The code, which is ready for integration into Work Package 5 (WP5), has been publicly

released on the project's official GitHub repository (https://github.com/icos-project) under open-source

and non-viral license.

By leveraging the architectural groundwork established in prior deliverables — D2.2 [1], D2.4 [2] —,

this report provides a structured analysis of the module’s evolution in alignment with the system’s

objectives.

The report introduces a comprehensive specification of the Application Manifest, a critical feature that

enables vertical application owners to harness the full capabilities of ICOS efficiently. The Application

Manifest facilitates seamless interaction with the Meta-Kernel Layer, offering developers a standardized

mechanism to deploy and optimize their applications within the ICOS framework.

The document also describes significant updates to components compared to the progress documented

in previous iterations — D3.1 [3], and D3.2 [4]. These updates encompass enhancements in performance

optimization, stability improvements, and refinements to the integration mechanisms, ensuring better

alignment with system-wide requirements. To support further development and collaboration, the report

also includes a reference to the official ICOS project repository, where the latest version of the module’s

source code is made available and the license describing the terms and conditions for use, reproduction,

and distribution of the component. Additionally, this document provides an in-sight of the necessary

updates and design refinements to ensure a smooth integration of the whole Meta-Kernel Layer module.

All components have been implemented, tested, integrated and deployed on the ICOS testbed. Results

of running on the integrated system are to be reported in deliverables “D5.3 Third ICOS Release:

Complete ICOS version” [6] and “D6.11 Final ICOS Product release” [7].

Efforts will continue beyond this final iteration to further refine the Meta-Kernel Layer Module by:

 addressing any remaining bugs

 optimizing performance and improving resource consumption of each individual component

 enhancing the reliability and stability of the integration ensuring seamless operation within the fully

integrated Meta-Kernel.

As discussed in Section 2, the implementation of inter-controller communication, will not be addressed

during the lifetime of this project. While the current focus has been on refining and integrating the Meta-

Kernel Layer Module, the development of mechanisms to facilitate communication between different

controllers within the system has been scoped out for future work. The implementation of inter-

controller communication will be considered as a key area for future development, building upon the

solid foundation laid by the current module and its integration within the ICOS framework.

https://github.com/icos-project

Document name: D3.3-Meta-Kernel Layer Module Integrated IT-2 Page: 44 of 44

Reference: D3.3 Dissemination: PU Version: 1.0 Status: Final

6 References

[1] ICOS D2.2 – “ICOS Architecture Design (IT-1)”. Giammatteo, Gabriele. May 2023

https://www.icos-project.eu/files/deliverables/D2.2_ICOS_Design_v1.0.pdf,

[2] ICOS D2.4 – “ICOS Architectural Design (IT-2)”. García, Jordi. July 2024

https://www.icos-project.eu/files/deliverables/D2.4-architectural-design-it2.pdf

[3] ICOS D3.1 – “Meta-Kernel Layer Module Integrated (IT-1)”. Skaburskas, Konstantin. October

2023. https://www.icos-project.eu/files/deliverables/D3.1_Meta_Kernel_Module_IT-1_v1.0.pdf

[4] ICOS D3.2 – “Meta-Kernel Layer Module Developed (IT-2)”. Lordan, Francesc. October 2024

https://www.icos-project.eu/files/deliverables/D3.2-Meta-Kernel_Layer_Module_Developed_IT-

2_v1.0.pdf

[5] ICOS D4.2 – “Data Management, Intelligence and Security Layers (IT-2)”, In preparation.

[6] ICOS D5.3 – “Third ICOS Release: Complete ICOS version”, In preparation.

[7] ICOS D6.11 – “Final ICOS Product release”, In preparation.

https://www.icos-project.eu/files/deliverables/D2.2_ICOS_Design_v1.0.pdf
https://www.icos-project.eu/files/deliverables/D2.4-architectural-design-it2.pdf
https://www.icos-project.eu/files/deliverables/D3.1_Meta_Kernel_Module_IT-1_v1.0.pdf
https://www.icos-project.eu/files/deliverables/D3.2-Meta-Kernel_Layer_Module_Developed_IT-2_v1.0.pdf
https://www.icos-project.eu/files/deliverables/D3.2-Meta-Kernel_Layer_Module_Developed_IT-2_v1.0.pdf

