

This document is issued within the frame and for the purpose of the ICOS project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070177. The opinions expressed and arguments employed

herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author’s view and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the ICOS Consortium. The content of all or parts of this document can be used and

distributed provided that the ICOS project and the document are properly referenced.
Each ICOS Partner may use this document in conformity with the ICOS Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g. web (Deliverables flagged as public will be automatically published in CORDIS

project’s page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the

Commission Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified

EU-S) EU SECRET under the Commission Decision No2015/444.

D3.2-Meta-Kernel Layer Module

Developed IT-2

Keywords:

Cloud, Edge, IoT, MetaOS, development, integration

Document Identification

Status Final Due Date 31/10/2024

Version 1.0 Submission Date 31/10/2024

Related WP WP3 Document Reference D3.2

Related

Deliverable(s)

D3.1, D2.4 Dissemination Level (*) PU

Lead Participant BSC Lead Author Francesc Lordan (BSC)

Contributors ATOS, NCSRD,

PSNC, L-PIT,

SUITE5, XLAB,

ENG, UPC, BSC,

TUBS, NKUA, CRF,

IBM

Reviewers Izabela Zrazinska

(Worldsensing)

Marc Michalke (TUBS)

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 2 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Francesc Lordan BSC

Alex Barceló BSC

Marc Michalke TUBS

Gabriele Giammatteo ENG

Maria Antonietta Di Girolamo ENG

Manuel Gallardo ATOS

Ivan Paez ZSCALE

Jordi Garcia UPC

Xavi Masip UPC

Montse Carreras UPC

Kalman Meth IBM

Document History

Version Date Change editors Changes

0.1 30/09/2024 BSC First draft version of ToC.

0.2 24/10/2024 ALL Main content for all sections

0.3 25/10/2024 BSC Aggregation, restructuring and formatting

0.4 30/10/2024 TUBS, WSE, BSC Internal review

0.5 31/10/2024 BSC Draft version for quality review

1.0 31/10/2021 ATOS Final version to be submitted

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Francesc Lordan (BSC) 31/10/2024

Quality manager Carmen San Roman 31/10/2024

Project Coordinator Francesco D’Andria 31/10/2024

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 3 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ...2

Table of Contents ...3

List of Tables ..5

List of Figures ..6

List of Acronyms ..7

Executive Summary ...8

1 Introduction ..9

1.1 Purpose of the document ..9

1.2 Relation to other project work..9

1.3 Structure of the document ..9

2 Meta-Kernel Layer Module Design ..10

2.1 Components and interfaces ..10

2.1.1 user.shell .. 10

2.1.2 user.shell-backend ... 10

2.1.3 discovery.lighthouse .. 11

2.1.4 runtime.job-manager ... 11

2.1.5 runtime.deployment-manager .. 12

2.1.6 runtime.app-setup .. 12

2.1.7 runtime.clusterlink ... 13

2.1.8 runtime.matchmaker .. 13

2.1.9 runtime.execution-manager ... 14

2.1.10 runtime.orchestrator-edge-cloud ... 14

2.1.11 runtime.policy-manager... 14

2.1.12 continuum.aggregator .. 14

2.1.13 edge.node ... 14

2.1.14 telemetry.agent .. 14

2.1.15 telemetry.gateway .. 14

2.1.16 telemetry.controller ... 15

2.2 Detailed design ...15

2.2.1 Job Manager .. 15

2.2.2 Deployment Manager .. 16

2.2.3 App Setup .. 17

2.2.4 Matchmaking ... 18

2.2.5 Logging and Telemetry ... 19

2.2.6 Enforcement of policies ... 20

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 4 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

3 Technology and Tools Selection for Implementation ..22

3.1 Inter-agent communications ...22

3.1.1 ClusterLink .. 22

3.1.2 Zenoh ... 23

3.2 Logging and Telemetry ..25

3.2.1 Metrics Collected .. 26

3.3 Policy Manager ..26

3.3.1 Policies Integration .. 27

3.3.2 Policies Model ... 27

3.3.3 GUI .. 27

3.3.4 Documentation .. 30

4 Conclusions ..31

5 References ..32

Annexes ..33

1.1 Job Manager API ...33

1.1.1 Endpoints ... 33

1.1.2 Models ... 38

1.2 Policy Model JSON ...42

1.3 Policy Manager API ...43

1.3.1 Endpoints ... 43

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 5 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1: API calls for shell-backend __ 11
Table 2: API calls for the Job Manager ___ 12
Table 3: API calls for the App Setup __ 13
Table 4: API calls for the Matchmaker __ 13
Table 5: API calls for the Policy Manager ___ 14
Table 6: API calls for the Telemetry Controller ___ 15

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 6 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1: The ICOS Meta-Kernel Layer (Controller and Agent) ____________________________________ 10
Figure 2: Sequence diagram for the interactions of Deployment Manager ____________________________ 16
Figure 3: Sequence diagram for the App Setup interaction with DPE ________________________________ 17
Figure 4: Sequence diagram for the App Setup interaction with ClusterLink __________________________ 18
Figure 5: Logging and Telemetry components communications ____________________________________ 19
Figure 6: Distribution of the Telemetry components across the Continuum nodes. ______________________ 20
Figure 7: Policies definition and enforcement __ 21
Figure 8: ClusterLink architecture ___ 23
Figure 9: Illustration of a distributed system in an IoT/Edge continuum context ________________________ 24
Figure 10: Logging and Telemetry technologies __ 25
Figure 11: Guest mode __ 28
Figure 12: User mode ___ 29

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 7 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /

acronym

Description

API Application Programming Interface

CLI Command-Line Interface

CRD Custom Resource Definition (Kubernetes term)

DPM Dynamic Policy Manager

Dx.y Deliverable number y belonging to WP x

EC European Commission

GUI Graphical User Interface

IT-x Development Iteration x

JM Job Manager

OCM Open Cluster Management (software)

PM Policy Manager

REST REpresentational State Transfer

WP Work Package

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 8 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

This document titled “D3.2 Meta-Kernel Layer Module Developed (IT-2)” focuses on the modifications

and improvements that the ICOS project Meta-Kernel Layer Module has experienced during its

transition from IT-1 into IT-2. Several parts of the architecture were already discussed in previous

deliverable “D3.1 Meta-Kernel Layer Module Integrated (IT-1)” [1]. The development of the Meta-

Kernel Layer Module for IT-2 leverages on the outcome of “D2.4 ICOS Architectural Design (IT-2)”

[2]. Both the development work described in this document as well as the document itself build upon

the foundation laid by D2.4. Furthermore, the scope of this document covers the conceptual design with

concrete implementations of the components, with a special focus on the changes born from the

transition from IT-1 into IT-2. The primary purpose of this document is to provide an account of the

design and implementation of the ICOS Meta-Kernel Layer Module (for IT-2), which is a critical

component of the ICOS project. This module plays a major role in the larger framework of the ICOS

Meta Operating System.

The current document is an essential resource for all stakeholders involved in the ICOS project, offering

a detailed account of the Meta-Kernel Layer Module's development and integration for IT-2. It

encapsulates the collective efforts on changes and improvements in this period (since IT-1), bringing

the project one step closer to its ultimate objectives.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 9 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This document is a report on the design, development, and implementation of ICOS Meta-Kernel Layer

Module at the end of development iteration 2 (IT-2).

1.2 Relation to other project work

This document uses results of “D2.4 ICOS Architectural Design (IT-2)” [2]. Namely, it considers the

elaborated architecture of ICOS Meta-Kernel Layer, its primary functions and interfaces with other

layers of the ICOS Meta Operating System.

This document complements “D3.1 Meta-Kernel Layer Module Integrated (IT-1)” [1] by building on

its findings and addressing additional aspects that arose during IT-2 development.

1.3 Structure of the document

The content in this document is divided in 2 major chapters

 Chapter 2 presents the System User Stories with special focus on novel aspects related to IT-2. This

chapter also includes further details on the components and their interfaces.

 Chapter 3 presents the selection of new tools that have been introduced in the ICOS project for the

implementation of components since IT-1.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 10 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

2 Meta-Kernel Layer Module Design

As shown in Figure 1 (Figure already present and discussed in D2.4 [2]), the Meta-Kernel Layer is now

present in both the ICOS Controller and the ICOS Agent, instead of just the ICOS Controller as

documents related to IT-1 suggested.

This chapter focuses on the new component, changes, improvements and new functionalities for IT-2.

For this purpose, the following sections will provide concrete design considerations as well as

components and interfaces related to the new IT-2.

2.1 Components and interfaces

2.1.1 user.shell

The ICOS shell now consists of two parts; the command-line interface (CLI) client, which was already

described in previous deliverables as well as the ICOS GUI. Both connect to the shell backend’s

RESTful API for all requests and allow for interfacing with the user. Update and Create commands

expect files that adhere to the ICOS application descriptor. Furthermore, the shell holds the login token

of the user.

Both components leverage the backend’s OpenAPI implementation. While the CLI is a binary executed

on any device, the GUI is available as an OCI image that can be run either on a client machine by using

a runtime like Docker, or on a remote appliance (including and ICOS controller installation) using

container orchestration platforms like Kubernetes.

2.1.2 user.shell-backend

The shell backend exposes a RESTful API at http://${CONTROLLER_ADDRESS}/api/v3 for defined

queries which then result in further API calls to different components, i.e. the JobManager, the IAM,

the aggregator or components of the intelligence layer. The API calls shown in Table 1 are fully

implemented for the current version of the shell backend.

Figure 1: The ICOS Meta-Kernel Layer (Controller and Agent)

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 11 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Table 1: API calls for shell-backend

HTTP request Description

GET /resource/ Returns a list of resources

GET /resource/{resourceId} Find resource by ID

GET /deployment/ Returns a list of deployments

POST /deployment/ Creates a new deployment

GET /deployment/{deploymentId} Find deployment by ID

PUT /deployment/{deploymentId} Updates a deployment

DELETE /deployment/{deploymentId} Deletes a deployment

DELETE /deployment/{deploymentId}/start Starts a deployment

DELETE /deployment/{deploymentId}/stop Stops a deployment

GET /user/login Logs user into the system

GET /user/logout Logs out current logged in user session

GET /healthcheck Health check

GET /controller/ Returns a list of controllers

POST /controller/ Adds a new controller

POST /metrics/train Trains a model on a set of metrics

POST /metrics/predict Predict metrics development based on model and

input metrics

2.1.3 discovery.lighthouse

The Lighthouse component still shares the code base of the shell backend with the only relevant

endpoints being GET /controller/ and POST /controller/. Despite being added to a new suite, this

component underwent no changes since D3.1 [1].

2.1.4 runtime.job-manager

The Job Manager component has sustained some refinements to its API interface to enhance its

functionality and to align with RESTful architectural principles. These improvements encompass a

comprehensive reorganization of endpoints, aiming to create a more modular, maintainable, and scalable

API architecture. Specifically, the API has been restructured to implement finer-grained resource

representations and more precise endpoint definitions, promoting a clear separation of concerns.

Table 2 lists the resources provided by its RESTful API and its operations. The full schemas are provided

in the Annexes.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 12 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Table 2: API calls for the Job Manager

HTTP request Description

GET /jobmanager Home route

GET /jobmanager/healthz Healthcheck

GET /jobmanager/jobs Retrieves all jobs

PUT /jobmanager/jobs Updates a job

GET

/jobmanager/jobs/executable/{orchestrator}?{ic

os_agent_id}

Lists executable jobs filtered by orchestrator

ICOS agent ID

GET /jobmanager/jobs/{job_uuid} Retrieves a specific job by UUID

DELETE /jobmanager/jobs/{job_uuid} Deletes a specific job by UUID

POST /jobmanager/groups Creates a new job group

GET /jobmanager/groups Retrieves all job groups

PUT /jobmanager/groups Updates a job group

GET /jobmanager/groups/{group_uuid} Retrieves a specific job group by UUID

DELETE /jobmanager/groups/{group_uuid} Deletes a specific job group by UUID

PUT /jobmanager/groups/stop/{group_uuid} Stops a specific job group by UUID

PUT /jobmanager/groups/start/{group_uuid} Starts a specific job group by UUID

GET /jobmanager/resources/status/{job_uuid} Retrieves the resource state by Job UUID

PUT /jobmanager/resources/status Updates the resource state by UUID

POST /jobmanager/policies/incompliance Creates a policy incompliance entry

2.1.5 runtime.deployment-manager

The deployment manager component maintains a stable architecture, having undergone no significant

modifications. Designed without exposing HTTP endpoints, it prevents direct user interaction and

interfaces with the runtime.job-manager through its interface (see Table 2 and section 2.1.4).

2.1.6 runtime.app-setup

The App Setup is a new component that is required in order to make runtime information, like topology

changes, available to the application and functional components related to job execution. IT-2

architecture design uses this information in the runtime.execution-manager and it is also used to

maintain the application service connectivity between agents (through ClusterLink). In general, having

this information available can be valuable for a wide variety of runtime decisions across the continuum.

This component acts with two main sources of information: Job Manager and Aggregator. On the one

hand, information on the start and finalization of jobs is received from the Job Manager through the App

Setup API shown in Table 3. On the other hand, information from the topology changes and other

continuum modifications are obtained through polling the Aggregator (component which already has an

interface for accessing the information required by the App Setup).

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 13 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Table 3: API calls for the App Setup

HTTP request Description

PUT /deployment Notify a new job in the system

DELETE /deployment/{deployment_id} Notify finalization of a job

The events and information generated by the App Setup are published through a global bus. Once the

information is published into this bus, other components are able to consume this information. More

detailed design and sequence diagrams are provided in section 2.2.3.

2.1.7 runtime.clusterlink

ClusterLink simplifies the connection between services that are located in different domains, networks,

and cloud infrastructures. ClusterLink runs on Kubernetes-enabled clusters. The ClusterLink

deployment operator allows easy deployment of ClusterLink to a Kubernetes cluster.

ClusterLink setup operations (create, deploy, delete) are performed using the ClusterLink CLI

command. Once the ClusterLink operator is deployed on a cluster, operations (peer, export, import,

policies) are performed through Custom Resource Definition objects (CRDs). The creation and

manipulation of CRDs is done through the Kubernetes API. Examples of the CRD formats for these

operations can be found at https://clusterlink.net/docs/main/tasks/operator/.

2.1.8 runtime.matchmaker

The interface for the runtime matchmaker remains the same in IT-2. The runtime matchmaker is

triggered by the job manager, receives the application descriptor YAML file, and calls the continuum

aggregator to retrieve the ICOS topology. The runtime matchmaker extracts the resources required for

the user application and matches them with the available resources in the ICOS topology to find the best

possible solution. It then responds to the job manager for the further deployment of the user application.

More details on the design and inner workings of the Matchmaker components are provided in section

2.2.4. The Matchmaker API endpoints can be seen in Table 4.

Table 4: API calls for the Matchmaker

HTTP request Description

GET / Healthcheck

POST /matchmake Receives the description of application.

Contacts the Aggregator service in order to retrieve ICOS topology.

Matchmaking is performed and the result is returned.

https://clusterlink.net/docs/main/tasks/operator/

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 14 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

2.1.9 runtime.execution-manager

The purpose and the API of this component remains the same as in IT-1.

2.1.10 runtime.orchestrator-edge-cloud

This component has received maintenance and can be considered stable. It has not experienced

significant changes on API nor interface since IT-1. It is now part of runtime.

2.1.11 runtime.policy-manager

The Policy Manager (or Dynamic Policy Manager) component has been implemented during IT-2,

according to the design previously described in D3.1 [1].

Several API endpoints are provided in this component, as shown in Table 5. For a full definition of the

URL and the schema on this REST calls see the Annexes.

Table 5: API calls for the Policy Manager

HTTP request Description

GET /policies/{id} Get a policy by id.

GET /policies/ Return the list of the policies created/updated

POST /policies/ Add new policies

GET /policies/status Read item

POST /alertmanager/ AlertManager Webhooks

POST /registry/icos/ ICOS process app descriptor

2.1.12 continuum.aggregator

This component has received maintenance and can be considered stable. It has not experienced

significant changes on API nor interface since IT-1.

2.1.13 edge.node

No changes between IT-1 and current IT-2.

2.1.14 telemetry.agent

The design, functionalities and interfaces for the Telemetry Agent remain constant from IT-1. The only

difference at architectural level is that in IT-2 the Telemetry Agents sends data to the new Telemetry

Gateway component and not directly to the Telemetry Controller. At implementation level, new metrics

and plugins have been added. Further details will be discussed later in section 2.2.5.

2.1.15 telemetry.gateway

The Telemetry Gateway exposes an API to receive metrics from the Telemetry Agents using the

OpenTelemetry Protocol (OTLP) format through HTTP and gPRC. The same protocols are used to send

data to the Telemetry Controllers.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 15 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

2.1.16 telemetry.controller

With respect to IT-1, the Telemetry Controller interface has been enriched with an API to manage alerts.

The API is compliant with the Prometheus Alerting Rules format and exposes methods to create and

delete alerting rules. This functionality is mainly exploited by the Policy Manager component that uses

the Telemetry Controller alerts to monitor and enforce the policies.

Table 6 reports the rules API. More information on the implementation of the alerting API is provided

in section 2.2.5.

Table 6: API calls for the Telemetry Controller

HTTP request Description

POST /rules/ Add a new rule. Expect in the body of the request a rule object.

DELETE /rules/{id} Delete the selected rule.

2.2 Detailed design

Following the description of the new components and interfaces provided in section 2.1, this section

focuses on component design including relevant sequence diagrams that define ICOS and its

components. This section describes the current status of integration and design for the Meta-Kernel

Layer at IT-2.

2.2.1 Job Manager

The runtime.job-manager component is the core module of the ICOS Controller. It is responsible for

comprehensive runtime management, encompassing control, persistence, and coordination among ICOS

components. By providing a persistence layer, the Job Manager serves as the definitive source of truth

within the system as described in D2.4 [2].

2.2.1.1 Lifecycle management

The runtime.job-manager comprehensive lifecycle management CRUD operations (Create, Read,

Update, Delete) ensure the consistent and efficient execution of Jobs. These operations oversee both the

state of individual Jobs and the state of the associated Resources within the owning ICOS Agents,

thereby maintaining system integrity and performance. By managing the Job lifecycle, the Job Manager

ensures that Jobs transition smoothly through various states, while adhering to the specified policies and

requirements.

2.2.1.2 Policy Manager integration

The integration with the runtime.policy-manager component is a critical aspect of the Job Manager’s

functionality. The Job Manager notifies the Policy Manager each time an application undergoes actions

such as creation, stopping, starting, updating, or deletion. This notification mechanism ensures that all

policy-related considerations are continuously monitored and enforced throughout the application

lifecycle. Additionally, the runtime.job-manager is responsible for addressing policy non-compliances

identified by the Policy Manager. Upon receiving a non-compliance request, the Job Manager initiates

a remediation process by updating the job’s status with the necessary metadata required by the

runtime.deployment-manager to take appropriate action. The Job Manager supports a wide range of

remediation actions, including horizontal and vertical scaling, security operations, and the reallocation

of deployments to different clusters or nodes.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 16 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

2.2.2 Deployment Manager

The Deployment Manager provides an abstraction layer which is functionally analogous to a driver.

This ICOS component clears the way for the integration of diverse orchestrator drivers within the system

topology. Currently, ICOS includes two distinct deployment manager implementations: one for Nuvla

and another for OCM. Both perform core functions: interacting with runtime.job-manager and

deploying workloads on their respective orchestrators. This design ensures that the essential operations

of runtime.deployment-manager remain unmodified, enabling the component to support multiple

orchestration backends without modifying its core architecture.

2.2.2.1 Interaction with underlying orchestrators

The Deployment Manager is constantly pulling jobs from the runtime.job-manager component. For a

job to be deemed executable, it must comply with the requirements defined by the query logic that

interfaces with the database. Once a job has been pulled, the runtime.deployment-manager is given

instructions on the operations to perform with the job. These instructions can vary widely, ranging from

something as simple as deploying an application to performing some kind of reallocation on an already

deployed resource. Just like the underlying orchestrators, the runtime.deployment-manager functions in

a pull mode, periodically scheduling calls to a specific endpoint exposed by the runtime.job-manager

API to fetch a list of executable jobs.

Figure 2: Sequence diagram for the interactions of Deployment Manager

Figure 2 shows the sequence diagram of the Deployment Manager. In this diagram we can see on the

left side the interactions between the Job Manager and the Deployment Manager. On the right side we

can see the interaction between Deployment Manager and the underlying orchestrators.

Each instance of the runtime.deployment-manager is associated with an unique ICOS agent identifier

(icos_agent_id). This identifier is supplied via runtime configuration settings specific to each ICOS

Agent. Having this unique identifier ensures that each deployment manager instance retrieves only the

jobs pertinent to its cluster resource manager of choice, thereby maintaining operational isolation and

preventing cross-cluster interference.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 17 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

2.2.2.2 Multi-Cluster Setups

Executing jobs in a scenario with multiple clusters requires several additional considerations. Consider

a scenario where an ICOS controller is managing multiple ICOS agents. Each of these agents are

deployed in separate environments with their own Deployment Manager instances. To pull executable

jobs, they will need to make calls to a route with the following pattern:

 GET /jobmanager/jobs/executable/{orchestrator}?{icos_agent_id}

Each runtime.deployment-manager instance is assigned a unique icos_agent_id, ensuring that they only

interact with jobs intended for their specific cluster.

By using a unique icos_agent_id we prevent race conditions in multi-cluster deployments where

multiple instances of the same type of deployment manager may be running concurrently. This strategy

enforces that each deployment manager retrieves jobs exclusively tied to its appointed ICOS agent. As

a result, we eliminate the risk of deploying a workload in the wrong infrastructure.

2.2.3 App Setup

As discussed in section 2.1.6, App Setup has a REST API used by the Job Manager and performs polling

unto the Aggregator. When there are relevant changes, those are notified through the bus. Figure 3 shows

a sequence diagram to highlight the interaction between those components and a Distributed Parallel

Execution –an entity part of the runtime.execution-manager which will make use of the runtime

information provided by the App Setup.

Figure 3: Sequence diagram for the App Setup interaction with DPE

Figure 3 presents how the Job Manager contacts the App Setup on a new app event through the App

Setup interface. Additionally, the App Setup will continuously monitor the Aggregator, from which it

will obtain real time information on the deployment status of the application. With this information, it

is able to emit app topology information into a bus and the Distributed Parallel Execution will consume

this app topology in order to reconfigure its resources.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 18 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 4: Sequence diagram for the App Setup interaction with ClusterLink

A similar diagram can be seen in Figure 4, which shows how the information given by the App Setup

(broadcasted through the bus) is consumed by the ClusterLink agent that, eventually, transmits the

required changes through the orchestrator. More information on the ClusterLink operational procedures

is provided in section 3.1.1.

2.2.4 Matchmaking

As described in D3.1, the Matchmaker is triggered by the Job Manager, and receives an application

descriptor YAML file as well as the ICOS topology retrieved through the Aggregator component. The

Matchmaker extracts the resources required for the user application and matches them with the available

resources in the ICOS topology to find the best possible solution for the application deployment. It then

responds to the job manager for the actual deployment of the user application.

In IT-2, the Matchmaker core process has been redesigned with respect to the previous version in order

to provide better solutions and meet the new requirements of this release. The current version is based

on a scoring mechanism to select the best nodes to execute the application’s components as well as on

affinity interrelationship features to prioritize nodes based on locality. Moreover, the Matchmaker

considers the technology-dependent compatibility of the application component mapping on node

compatibility within the ICOS topology, ensuring that all components within a single application are

placed on the same type of node.

The Matchmaker algorithm for IT-2 operates through the following four steps:

1. Filtering: It extracts the resources required for each component by parsing the application

header and filters out the candidate nodes from the ICOS topology that fulfil the hard constraints

defined for each component and the user-defined policies.

2. Scoring: After the filtering stage, the score function is invoked to assign scores to the filtered

nodes of each component. The scoring mechanism ranks the nodes based on performance,

security, and energy consumption, with scores normalised between 0 and 100. Weights are

assigned to prioritise the scoring of nodes based on user demands for performance, security, and

energy consumption.

3. Affinity: After the scoring stage, an affinity function is invoked to prioritize the interrelation

between selected nodes. For instance, it gives higher priority to nodes within the same cluster

compared to nodes in different cluster regions. To rank the nodes link, factors such as cost and

latency to other nodes can be considered. Evaluating the delays between nodes helps optimise

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 19 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

the application's end-to-end latency and maintain the quality of service by selecting nodes close

to the connected application components.

4. SelectBest: The matchmaking then selects the combination of nodes with the highest scores by

implementing a max-flow algorithm.

2.2.5 Logging and Telemetry

In IT-2, a new architectural component has been added: the Telemetry Gateway. The main role of this

component is to decouple the Telemetry Agents from the Telemetry Controllers. In the new architecture,

the Telemetry Agents send their data to the Telemetry Gateway. The Gateway then forwards the data to

the Telemetry Controller (see diagram in Figure 5).

Figure 5: Logging and Telemetry components communications

This change brings several benefits:

 It follows more closely the ICOS Continuum architecture.

 It supports new use cases where the ICOS Controllers are not directly reachable from the edge devices.

 It allows to pre-process data at ICOS Agent level (before sending it at the Controller). This is

particularly important since it allows to a) filter out data not needed at Controller level and, therefore,

reduce the data stored in the Controller, and b) to enrich data with additional metadata (e.g. the “icos-

agent-id").

 It allows to store and analyse data at the Agent directly. This makes it possible for components in the

ICOS Agent to exploit the data directly without relying on the Controller. This feature will be

exploited by the Intelligence Layer.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 20 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 6: Distribution of the Telemetry components across the Continuum nodes.

As depicted in Figure 6, the Telemetry Gateway has been designed to be deployed in the ICOS Agent

nodes. It receives data from the Telemetry Agents and forward it (after a processing step) to the

Telemetry Controller.

2.2.6 Enforcement of policies

In order to adapt the orchestration of an application based on the application and/or system conditions

and events following pre-defined policies, an important integration has been realized between the Job

Manager, the Dynamic Policy Manger and the Logging and Telemetry subsystem.

As depicted in the diagram in Figure 7, the Job Manager invokes the Dynamic Policy Manager

component when a new application is deployed. The Dynamic Policy Manager parses the Application

Descriptor and instantiates the policies defined in it. Policies are based on data measured and collected

at the edge. The Dynamic Policy Manager registers (using a new API described in section 2.1.16) the

necessary alerting rules to be notified when the data measured is not compliant with the conditions

expressed by the policies.

During the application runtime, the Dynamic Policy Manager will be notified every time the metrics

received from the edge and the application are violating the rules defined at deployment time. The

Dynamic Policy Manager processes the event and, if this results in a policy violation, notifies the Job

Manager. The Job Manager will then take appropriate actions to re-establish a deployment that can

satisfy the policies defined (e.g., migrate the application to another node, scale-up the application, etc.).

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 21 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 7: Policies definition and enforcement

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 22 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

3 Technology and Tools Selection for

Implementation

This chapter describes new technologies that have been added to ICOS IT-2. All previously discussed

technologies and tools (i.e. those discussed in the homonym chapter in D3.1 [1]) remain true and are

part of IT-2 implementation.

The following sections will discuss components or functionalities in which a new technology or tool has

been adopted.

3.1 Inter-agent communications

During IT-2 development, several new scenarios that need to perform communication across different

ICOS agents and/or ICOS controller were detected. We can roughly consider two main scenarios that

require this kind of communications:

 Communication between ICOS components from different agents.

 Communication between parts of the application that are deployed in different agents.

In general, ICOS tries to minimize the assumptions regarding connectivity and networking across

different parts of the infrastructure. Considering the continuum context of this project, there is the need

to provide some basic functionalities to the application in addition to certain internal requirements on

communication between ICOS components.

For this goal, we introduce a new technology: ClusterLink. ClusterLink deploys a gateway into each

cluster, facilitating the configuration and access to multi-cloud services. It establishes secure, service-

level connectivity between multiple clusters.

This, along with its distributed control plane and fine-grained policy control over connection

establishment and access policies, is the main advantage of ClusterLink over some of its competitors.

During the development of App Setup, ICOS team has identified a need of a decentralized and

distributed data exchange. From the App Setup point of view, a bus is required for sending information

to agents (as shown in the sequence diagrams from Figure 3 and Figure 4). The technology chosen to

satisfy this requirement is Eclipse Zenoh, a technology already present in WP4 and thus part of ICOS.

3.1.1 ClusterLink

The ClusterLink gateway contains the following internal subcomponents:

 Control Plane (CP) is responsible for maintaining the internal state of the gateway, for all the

communications with the remote peer gateways by means of the ClusterLink CP Protocol, and for

configuring the local data plane to forward user traffic according to policies. Part of the control plane

is the policy engine that can also apply network policies (ACL, load-balancing, etc.)

 Data Plane (DP) responds to user connection requests, both local and remote, initiates policy

resolution in the CP, and maintains the established connections. ClusterLink DP relies upon standard

protocols and avoids redundant encapsulations, presenting itself as a Kubernetes service inside the

cluster and as a regular HTTP endpoint from outside the cluster, requiring only a single open port

(HTTP/443) and leveraging HTTP endpoints for connection multiplexing.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 23 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 8: ClusterLink architecture

Figure 8 shows the high-level overview of the ClusterLink architecture. ClusterLink leverages the

Kubernetes API using CRDs to configure cross-cluster communication. ClusterLink management is

based on the following key concepts:

 Peers: Represent remote ClusterLink gateways and contain the metadata necessary for creating

protected connections to these remote peers.

 Exported services: Represent application services hosted in the local cluster and exposed to remote

ClusterLink gateways as Imported Service entities in those peers.

 Imported services: Represent remote application services that the gateway makes available locally

to clients inside its cluster.

 Policies: Represent communication rules that must be enforced for all cross-cluster communications

at each ClusterLink gateway.

For further information, please refer to the concepts section on the ClusterLink website:

https://clusterlink.net/docs/latest/concepts/.

3.1.2 Zenoh

Eclipse Zenoh is a communication and networking protocol that enables developers to unify the way

they interact with the data across its journey: a) capture of data: sensors capture data at the edge, b) data

transmission: data is transmitted from the edge to its destination, c) computation and storage: data is

stored as is, or after computation, and d) retrieval of data: data is retrieved, often for further processing.

Existing communication protocols do not care about computation, storage, and retrieval. Eclipse Zenoh

exploits this opportunity and provides Pub/Sub/Query protocol and a set of unified abstractions for data

in motion, data at rest, and computations at the Internet Scale.

In the context of Edge-to-cloud continuum, IoT solutions are faced with a set of compute, storage, and

communication resources that span from the microcontroller to the cloud, it is in their benefit to leverage

this potential. Eclipse Zenoh runs efficiently on server-grade hardware and networks, microcontrollers,

and constrained networks. Finally, Zenoh supports peer-to-peer, routed, and brokered communication,

thus allowing for an optimal communication model at each system stage.

Key differentiators of Eclipse Zenoh are:

 Cloud to Microcontroller Communication. Zenoh can work efficiently and perform from server-

grade hardware and networks to the embedded microcontroller and extremely constrained networks.

Zenoh allows data to freely flow vertically and horizontally from the microcontroller to the data

center, providing developers with a single solution for data distribution, and the ability to integrate

technologies to bridge the communication between the enterprise and the embedded world.

https://clusterlink.net/docs/latest/concepts/

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 24 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

 Data Centricity and Location Transparency for Data in Movement and at Rest. Location

transparency is a consequence of data centricity – in these systems users only need to express interests

without any concern about the location of its source. This feature is essential as it makes dealing with

scale, failures, and load-balancing easier.

 It Runs Over Any Topology. Zenoh can operate under different models, allowing it to run over any

topology and anywhere across the continuum. It can run in (i) a peer-to-peer fashion way, allowing

the creation of clique or mesh topologies; (ii) a brokered fashion way, where nodes have only a limited

set of functionalities and rely on the network to provide the full Zenoh capabilities; (iii) routed fashion

way, where nodes act as software routers that forward Zenoh messages between nodes, as shown in

Figure 9.

Figure 9: Illustration of a distributed system in an IoT/Edge continuum context

Eclipse Zenoh APIs are available in different programming languages such as: Rust, C, C++, Python,

Java/Kotlin. Zenoh core’s API has been developed in Rust language to provide security by design and

avoid memory leakage.

Subscriptions can leverage wildcards to denote a set of resources of their interest related to a specific

vehicle or a set of vehicles, as follows:

subscribe fleet/CA/robot/3/halt

Query are also supported, an example of a get operation is the following:

get fleet/FR/robot/1/pointcloud

Query operations also support wildcard **, which will bring multiple results (i.e. all results that are

present at the system).

At the time of writing this deliverable, Eclipse Zenoh is used as a data bus for inter-process

communication (IPC) for multiple Kubernetes clusters. Eclipse Zenoh is also used in the Use Case 1

Agriculture Operational Robotic Platform for Robot-to-Cloud communication developed by the L-PIT

and PSNC partners. The latest version of Eclipse Zenoh is v.1.0.0, it was released on 21 October 2024.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 25 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

3.2 Logging and Telemetry

Figure 10 highlights the main third-party technologies integrated to realize the telemetry components.

With respect to the previous version presented in D3.1 [1], the following new third party technologies

have been used:

 The Telemetry Gateway component has been implemented using the OpenTelemetry and Prometheus

protocols and tools. This ensures a perfect compatibility and uniformity with the other telemetry

components.

 The Alerting API has been implemented using two components:

1. Prometheus AlertManager (Apache 2.0 license) to send alerts.

https://prometheus.io/docs/alerting/latest/alertmanager/

2. Prometheus-API project (MIT license) to manage alerting rules programmatically.

https://github.com/hayk96/prometheus-api

Figure 10: Logging and Telemetry technologies

In order to avoid confusion and clashes with ICOS concepts and terminology (e.g., the word “Agent” is

use in both contexts), a renaming of the software module has been done. In particular:

 Telemetruum Hub is the software module that implements the Telemetry Controller architectural

component.

 Telemetruum Gateway is the software module that implements the Telemetry Gateway architectural

component.

 Telemetruum Leaf is the software module that implements the Telemetry Agent architectural

component.

Note that Figure 10 shows the technologies with the renaming to avoid confusion.

https://prometheus.io/docs/alerting/latest/alertmanager/
https://github.com/hayk96/prometheus-api

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 26 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

3.2.1 Metrics Collected

Concerning the metrics collected at the edge, in addition to the metrics mentioned in deliverable D3.1,

some improvements have been introduced:

 A new component named Telemetruum Leaf Exporter has been implemented. This component fills

a gap generating some metrics there were missing to allow ICOS to manage the edge devices. The

component generates the following metrics:

- tlum_host_info: provides generic information about the device (e.g. operating system, hostname,

ip address).

- tlum_orch_info: provides information about the ICOS orchestrator that manages the device (e.g.

OCM/Nuvla agent id).

- tlum_runtime_info: provides information about the local runtime platform (i.e. docker or

kuberentes versions).

- tlum_workload_info: provides information about the ICOS applications (or components of an

applications) that are running on the device (e.g., name, id, labels).

- node_mounted: for Nuvla only, provides information about the currently available attached

peripherals.

 Logs and metrics from Tetragon (https://tetragon.io) have been integrated. Tetragon is a tool

integrated in WP4 for auditing the security of ICOS devices. Results from the security assessment

and policies are ingested by the Telemetry components and made available to the other ICOS

components (e.g., to define orchestration policies).

 Fine tuning and improvements of the metadata (i.e., labels) attached to the metrics to make them more

easily usable in ICOS.

3.3 Policy Manager

As reported in deliverable “D3.1 Meta-Kernel Layer Module Integrated (IT-1)” [1], the Policy Manager

is used to support and enable policies for other components of the ICOS project.

The first release of the PM provided a first version about the architecture, design of the component, the

GUI and the methodology about the use of the PM; specifically an API REST is implemented for the

use of the Policy Manager to read and create a policy (more details available in previous D3.1 [1]).

The second release of the PM includes the following implementation:

 Integration with the other ICOS components, such as Job Manager, App Descriptor, and dataClay as

storage backend.

 Policies improvements about:

- features: activate/deactivate/delete policy actions.

- models: a new implementation of the model where more details are added about the functionality,

description of the policy.

 An user friendly GUI is re-designed and implemented to use policies and its features integrated with

the Keycloak tool.

 Creation of the documentation website.

https://tetragon.io/

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 27 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

3.3.1 Policies Integration

One of the important achievements for the Policy Manager is to integrate with other ICOS components

and tools such as:

 dataClay as a policy storage backend: in the previous release the storage of the information policies

used MongoDB as a non-relational database and a simple file text. The current release is able to use

dataClay (part of the Data Management Layer) as a backend instead.

 In the new release a new redesign of how to storage is provided in order to make uniform and

compliant the integration with the ICOS project.

 Job Manager where:

- PM manager will forward these to JM as part of an incompliance.

- JM will enrich the related job and make it executable by the owner.

- PM will receive the job, extract the subtype(action) and will enforce it with specific strategy as for

example .

- PM will report the status to JM.

 Application descriptor: provides an HTTP REST API to parse an Application Descriptor manifest and

set-up the policies for the application based on the content of the descriptor.

3.3.2 Policies Model

A common model for expressing the policies is adopted and used to store the policies internally and to

transfer the policies in the ICOS MetaOS. Specifically, a policy is made of three essential parts:

 a subject (subject)

 a specification (spec)

 an action (action)

The JSON format file can be seen in the Annexes.

3.3.3 GUI

The Policy Manager component includes a dedicated GUI to help the user. The objective is to easily use

the ICOS policies. The main achievements are the following:

 The integration with the Keycloak to manage how to access to the policies: guest user and user mode

access.

 Reading and creation of the policies.

And the Keycloak integration, consisting of the following list of features:

 Guest Mode: Guest users can only view the list of policies but cannot edit them (Figure 11).

 User Mode: Logged-in users can access a private area where they can create, update, and view policies

(Figure 12).

 Light/Dark Mode: The application supports a toggle between light and dark themes for all users.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 28 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 11: Guest mode

The other features implemented are about the policy management, specifically:

 Display a list of all policies.

 Create new policies.

 Edit policies through a dedicated edit screen (accessed via the edit icon).

 Delete policies with a confirmation dialog that appears when the delete icon is clicked.

 Not Found Page: a custom error page is shown if the user tries to access a non-existent link.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 29 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Figure 12: User mode

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 30 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

At the moment of creating this deliverable we are finalizing the access for the policy manager services,

and the basic functionalities as create and delete policy. The planned features for the next releases are:

 Full policy deletion functionality.

 Policy updates.

 Activation/deactivation of policies.

 Security improvements.

 Search component functionality.

3.3.4 Documentation

The official ICOS tehcnical documentation includes a dedicated section that shows and explains the

features of the Policy Manager. This documentation will help the technical user and allow him to

understand and work with this component. This documentation is available at the following URL:

https://www.icos-project.eu/docs/Developer/Components/dynamic-policy-manager/

https://www.icos-project.eu/docs/Developer/Components/dynamic-policy-manager/

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 31 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

4 Conclusions

The ICOS project successfully concluded the second iteration of development and integration of the

ICOS Meta-Kernel Layer Module. This document describes Meta-Kernel Layer Module IT-2 and

manifests an important milestone on the progress this project has experienced since the previous IT-1.

The progress on the components that have undergone modifications during IT-2 development has been

validated in the ICOS testbed. On this environment, the components have shown that they are ready to

be integrated and they demonstrate their contribution to the overall ICOS MetaOS. This holds true for:

 The components receiving maintenance upgrades during this period.

 The modifications and new features that have been designed and implemented for IT-2.

Following up this IT-2, the ICOS project will be able to focus on finishing the Meta-Kernel Layer for

IT-3 by combining all the gathered knowledge regarding the interaction of their components. The ICOS

codebase will be able to reach a next step in terms of stability and the ICOS project will produce the

artifacts required for validating through Use Cases as well as being ready for general public adoption.

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 32 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

5 References

[1] ICOS. D3.1 – Meta-Kernel Layer Module Integrated (IT-1). Skaburskas, Konstantin. 2023.

https://www.icos-project.eu/files/deliverables/D3.1_Meta_Kernel_Module_IT-1_v1.0.pdf,

retrieved 31/10/2024.

[2] ICOS. D2.4 – ICOS Architectural Design (IT-2), García, Jordi. 2024. https://www.icos-

project.eu/files/deliverables/D2.4-architectural-design-it2.pdf, retrieved 31/10/2024.

https://www.icos-project.eu/files/deliverables/D3.1_Meta_Kernel_Module_IT-1_v1.0.pdf
https://www.icos-project.eu/files/deliverables/D2.4-architectural-design-it2.pdf
https://www.icos-project.eu/files/deliverables/D2.4-architectural-design-it2.pdf

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 33 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Annexes

1.1 Job Manager API

1.1.1 Endpoints

1.1.1.1 GET /jobmanager/groups

Response:

Code Description Schema

200 OK [[models.JobGroup]]

400 Bad Request string

404 Not Found string

1.1.1.2 PUT /jobmanager/groups

Parameters:

Name Located in Description Required Schema

JobGroup body JobGroup information Yes models.JobGroup

Response:

Code Description Schema

200 OK models.JobGroup

400 Bad Request string

404 Not Found string

1.1.1.3 POST /jobmanager/groups

Parameters:

Name Located in Description Required Schema

application body Application manifest YAML Yes String

Response:

Code Description Schema

201 Created models.JobGroup

422 Unprocessable Entity string

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 34 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

1.1.1.4 PUT /jobmanager/groups/start/{group_uuid}

Parameters:

Name Located in Description Required Schema

group_uuid path JobGroup UUID Yes string

Responses:

Code Description Schema

200 OK models.JobGroup

400 Bad Request string

404 Not Found string

1.1.1.5 PUT /jobmanager/groups/stop/{group_uuid}

Parameters:

Name Located in Description Required Schema

group_uuid path JobGroup UUID Yes string

Responses:

Code Description Schema

200 OK models.JobGroup

400 Bad Request string

404 Not Found string

1.1.1.6 GET /jobmanager/groups/{group_uuid}

Parameters:

Name Located in Description Required Schema

group_uuid path JobGroup UUID Yes string

Responses:

Code Description Schema

200 OK models.JobGroup

400 Bad Request string

404 Not Found string

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 35 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

1.1.1.7 DELETE /jobmanager/groups/{group_uuid}

Parameters:

Name Located in Description Required Schema

group_uuid path JobGroup UUID Yes string

Responses:

Code Description Schema

200 OK string

400 Bad Request string

404 Not Found string

1.1.1.8 GET /jobmanager/jobs

Responses:

Code Description Schema

200 OK [[models.Job]]

404 Can not find Jobs string

1.1.1.9 PUT /jobmanager/jobs

Parameters:

Name Located in Description Required Schema

job_uuid path Job UUID Yes string

Job body Job information Yes models.Job

Responses:

Code Description Schema

200 OK models.Job

400 Error reading request body string

404 Could not find job string

1.1.1.10 GET /jobmanager/jobs/executable/{orchestrator}?{icos_agent_id}

Parameters:

Name Located in Description Required Schema

orchestrator path Orchestrator type [ocm | nuvla] Yes string

icos_agent_id query ICOS Agent ID No string

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 36 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Responses:

Code Description Schema

200 OK [models.Job]

400 Orchestrator type is required string

404 Cannot find executable Jobs string

500 Internal server error string

1.1.1.11 PATCH /jobmanager/jobs/promote/{job_uuid}

Parameters:

Name Located in Description Required Schema

job_uuid path Job UUID Yes string

Responses:

Code Description Schema

204 Job Promoted string

400 Job UUID is required string

404 Can not find Job to promote string

1.1.1.12 GET /jobmanager/jobs/{job_uuid}

Parameters:

Name Located in Description Required Schema

job_uuid path Job UUID Yes string

Responses:

Code Description Schema

200 Ok models.Job

400 Job UUID is required string

404 Can not find Job by UUID string

1.1.1.13 DELETE /jobmanager/jobs/{job_uuid}

Parameters:

Name Located in Description Required Schema

job_uuid path Job UUID Yes string

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 37 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Responses:

Code Description Schema

200 Ok string

400 Job UUID is required string

404 Can not find Job to delete string

1.1.1.14 POST /jobmanager/policies/incompliance

Parameters:

Name Located in Description Required Schema

application body Remediation Object Yes string

Responses:

Code Description Schema

200 OK models.Remediation

400 Remediation Object is not correct string

422 Unprocessable Entity string

1.1.1.15 PUT /jobmanager/resources/status

Parameters:

Name Located in Description Required Schema

id path Resource UUID Yes string

resource body Resource info Yes models.Resource

Responses:

Code Description Schema

200 Resource updated string

400 Resource UUID is required string

404 Can not find Resource to update string

1.1.1.16 GET /jobmanager/resources/status/{job_uuid}

Parameters:

Name Located in Description Required Schema

job_uuid path Job UUID Yes string

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 38 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Responses:

Code Description Schema

200 OK models.Resource

400 Job UUID is required string

404 Can not find Job by UUID string

1.1.2 Models

1.1.2.1 models.Condition

Name Type Description Required

lastTransitionTime string Yes

message string Yes

observedGeneration integer No

reason string Yes

status models.ConditionStatus Yes

type models.ResourceState Yes

1.1.2.2 models.ConditionStatus

Name Type Description Required

models.ConditionStatus string

1.1.2.3 models.Content

Name Type Description Required

name string Yes

yaml string Yes

1.1.2.4 models.Instruction

Name Type Description Required

componentName string No

contents [models.Content] No

id string No

job_id string Excluded from YAML No

policies [models.Policy] No

requirements models.Requirement No

type string No

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 39 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

1.1.2.5 models.Job

Name Type Description Required

id string No

instruction models.Instruction No

job_group_id string No

namespace string No

orchestrator models.OrchestratorType No

owner_id string No

resource models.Resource No

state models.JobState No

sub_type models.RemediationType No

targets models.Target No

type models.JobType No

1.1.2.6 models.JobGroup

Name Type Description Required

appDescription string No

appName string No

id string No

jobs [models.Job] Yes

1.1.2.7 models.JobState

Name Type Description Required

models.JobState string

1.1.2.8 models.JobType

Name Type Description Required

models.JobType string

1.1.2.9 models.OrchestratorType

Name Type Description Required

models.OrchestratorType string

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 40 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

1.1.2.10 models.Policy

Name Type Description Required

component string No

fromTemplate string No

name string No

remediation string No

spec models.PolicySpec No

variables models.PolicyVariables No

1.1.2.11 models.PolicySpec

Name Type Description Required

expr string No

thresholds models.Thresholds No

1.1.2.12 models.PolicyVariables

Name Type Description Required

compssTask string No

thresholdTimeSeconds integer No

1.1.2.13 models.Remediation

Name Type Description Required

id string No

remediationStatus models.RemediationStatus Yes

remediationTarget models.RemediationTarget No

remediationType models.RemediationType Yes

resource_id string No

1.1.2.14 models.RemediationStatus

Name Type Description Required

models.RemediationStatus string

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 41 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

1.1.2.15 models.RemediationTarget

Name Type Description Required

command string No

container string No

id string No

namespace string No

node string No

pod string No

pod_uid string No

remediation_id string No

1.1.2.16 models.RemediationType

Name Type Description Required

models.RemediationType string

1.1.2.17 models.Requirement

Name Type Description Required

architecture string No

cpu string No

devices string No

memory string No

1.1.2.18 models.Resource

Name Type Description Required

conditions [models.Condition]

OriginalResourceName

string gorm:"type:text" json:"-"

validate:"omitempty"

No

job_id string No

remediations [models.Remediation] No

resource_name string No

resource_uuid string we set this field manually No

1.1.2.19 models.ResourceState

Name Type Description Required

models.ResourceState string

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 42 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

1.1.2.20 models.Target

Name Type Description Required

cluster_name string Yes

node_name string No

orchestrator models.OrchestratorType Yes

1.1.2.21 models.Thresholds

Name Type Description Required

critical integer No

warning integer No

1.2 Policy Model JSON

An example of an actual valid policy:

{
 "name": "string",
 "subject": {
 "type": "app",
 "appName": "string",
 "appComponent": "string",
 "appInstance": "string"
 },
 "spec": {
 "description": "",
 "type": "template",
 "templateName": "string"
 },
 "action": {
 "type": "webhook",
 "url": "string",
 "httpMethod": "CONNECT",
 "extraParams": {},
 "includeAccessToken": false
 },
 "variables": {},
 "properties": {}
}

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 43 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

1.3 Policy Manager API

1.3.1 Endpoints

1.3.1.1 GET/registry/api/v1/policies/{id}

Parameters: an authorization access token is requested as String

Request body is provided from the following schema;

Attribute Name Type Description

id Long Unique identifier of the deployment

1.3.1.2 GET /registry/api/v1/policies/

Parameters: an authorization access token is requested as String.

No schema is provided.

{
 "name": "cpu_usage-for-agent",
 "subject": {
 "type": "host",
 "hostId": "57e17cac94714bf6976f1e071d64d586",
 "agentId": "icos-agent-1"
 },
 "spec": {
 "description": "",
 "type": "telemetryQuery",
 "expr": "avg without (...) > 0.5",
 "violatedIf": None,
 "thresholds": None
 },
 "action": {
 "type": "webhook",
 "url": "https://localhost:3246/",
 "httpMethod": "POST",
 "extraParams": {},
 "includeAccessToken": False
 },
 "variables": {
 "maxCpu": "0.5"
 },
 "properties": {}
}

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 44 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

1.3.1.3 POST/registry/ap1/v1/policies/{policy}

Parameters: an authorization access token is requested as String.

Request body is provided from the following schema;

Attribute Name Type Description

subject Subject[]

Provides a set of information about the type of

application, name of the application, component

and instance

spec Spec[] Set of information about the template used

action Action[]
Set of information about the action to provided.

[DEFAULT] is “webhook”.

variables Variables[]

[OPTIONAL] addtional properties. It can a

string, an integer or a number.

[DEFAULT] is {}

properties Properties[]
[OPTIONAL] additional properties [DEFAULT]

is {}

Subject[]

Attribute Name Type Description

type const Default is “app”

appName String Name of the app

appComponent String Component of the app

appInstance String Instance of the app

Spec[]

Attribute Name Type Description

description String [DEFAULT] is empty “”

type Const [DEFAULT] is “template”

templateName String Name of the template

Action[]

Attribute Name Type Description

url String Link to the alermanager

type Const [DEFAULT] is “webhook”

httpMethod String [DEFAULT] is “CONNECT”

extraParams [] Additional properties. [DEFAULT] is empty {}

includeAccessToken boolean Token to acces to the webhook, default is FALSE

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 45 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Http methods from the following RFCs are all observed:

 RFC 7231: Hypertext Transfer Protocol (HTTP/1.1), obsoletes 2616

 RFC 5789: PATCH Method for HTTP

Allowed values are : "CONNECT", "DELETE", "GET", "HEAD", "OPTIONS", "PATCH", "POST",

"PUT", "TRACE".

Variables[]

Attribute Name Type Description

#0 String [OPTIONAL]

#1 integer [OPTIONAL]

#2 number [OPTIONAL]

Properties[]

Attribute Name Type Description

oneoff boolean boolean

interval string Interval where the policy should be acts

pendingInterval String Information about the interval status

1.3.1.4 POST/registry/api/v1/icos/

Parameters: authorization access token

Request body is provided from the following schema;

Attribute Name Type Description

app_descriptor App_descriptor[] Object that provided a set of information.

app_instance String Instance name of the app descriptor.

common_action Common_action[]
Object that provides a set of information about

the service, specifically for the icos-service.

service String name of the service

app_descriptor[]

Attribute Name Type Description

name String Name of the app descripton

description String [DEFAULT] is “”.

components Component[]
Object that providesa a set of information about

the compoennts

policies Policies[]
Object that provided a set of information about

the policies

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 46 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Component[]

Attribute Name Type Description

name
Name of the

component
Object that provided a set of information.

type String Type of the component

policies policies[]

Array Object that providesa a set of information

about the policies for the icos service..

[DEFAULT] is empty : []

Policies[] :

Attribute Name Type Description

name string Name of the policies

component string It can be Null

fromTemplate string It can be null

spec Spec[]
Object provides a set of information about

policies template, telemetry and constraints

remediation string It can be null

variables Variables[] [DEFAULT] is {}

properties Properties[] [DEFAULT] is {}

common_action[]

Attribute Name Type Description

uri String Link to the alermanager

type Const [DEFAULT] is “icos-service”

httpMethod String [DEFAULT] is “CONNECT”

extraParams [] Additional properties. [DEFAULT] is empty {}

includeAccessToken boolean Token to acces to the webhook, default is FALSE

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 47 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

1.3.1.5 POST/watcher/api/v1/webhooks/alertmanager

Parameters: access token

Attribute Name Type Description

version String

groupKey string

truncatedAlerts 0

status String

receiver String

groupLabels GroupLabels[] [DEFAULT] is {}

commonLabels CommonLabels[] DEFAULT] is {}

commonAnnotations CommonAnnotations[] DEFAULT] is {}

externalURL string

alerts AlertsArray<object> Array Object provides items as status, label, ...

Grouplabels[]

Attribute Name Type Description

Additional properties String [DEFAULT] : {}

CommonLabels[]

Attribute Name Type Description

Additional properties String [DEFAULT] : {}

CommonAnnotations[]

Attribute Name Type Description

Additional properties String [DEFAULT] : {}

Alerts[]

Attribute Name Type Description

Items Items[]

Document name: D3.2-Meta-Kernel Layer Module Developed IT-2 Page: 48 of 48

Reference: D3.2 Dissemination: PU Version: 1.0 Status: Final

Items []

Attribute Name Type Description

status String It can be null

labels Labels[] Additional properties

annotations Annotations[] Additional properties

startsAt String It provides the date-times when the policies started.

endsAt String It provides the date-time when the policies ended.

generatorUrl String Url of the generator

fingerprint String It can be null.

Labels

Attribute Name Type Description

Additional properties String [DEFAULT] : {}

Annotations[]

Attribute Name Type Description

Additional properties String [DEFAULT] : {}

1.3.1.6 GET/status/

Parameters: access token

