

This document is issued within the frame and for the purpose of the ICOS project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No. 101070177. The opinions expressed and arguments employed

herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the author’s view and the European Commission is not responsible for any use that may be

made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the ICOS Consortium. The content of all or parts of this document can be used and

distributed provided that the ICOS project and the document are properly referenced.
Each ICOS Partner may use this document in conformity with the ICOS Consortium Grant Agreement provisions.

(*) Dissemination level: (PU) Public, fully open, e.g. web (Deliverables flagged as public will be automatically published in CORDIS

project’s page). (SEN) Sensitive, limited under the conditions of the Grant Agreement. (Classified EU-R) EU RESTRICTED under the

Commission Decision No2015/444. (Classified EU-C) EU CONFIDENTIAL under the Commission Decision No2015/444. (Classified

EU-S) EU SECRET under the Commission Decision No2015/444.

D3.1 Meta-Kernel Layer Module

Integrated (IT-1)

Keywords:

Cloud, Edge, IoT, MetaOS, development, integration

Document Identification

Status Final Due Date 30/09/2023

Version 1.0 Submission Date 20/10/2023

Related WP WP3 Document Reference D3.1

Related

Deliverable(s)

D2.1, D2.2 Dissemination Level (*) PU

Lead Participant SIXSQ Lead Author Konstantin Skaburskas

(SixSq)

Contributors ATOS, NCSRD,

PSNC, L-PIT,

SUITE5, XLAB,

ENG, UPC, BSC,

TUBS, NKUA, CRF

Reviewers Sebastian Cajas Ordoñez

(CeADAR)

Jaydeep Samanta

(CeADAR)

Nikos Dimitriou

(NCSRD)

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 2 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Alex Volkov ATOS

Francesco D’Andria ATOS

Anna Queralt BSC

Francesc Lordan BSC

Andrés L Suárez-Cetrulo CeADAR

Jaydeep Samanta CeADAR

Ricardo Simón Carbajo CeADAR

Sebastián Cajas Ordóñez CeADAR

Gabriele Giammatteo ENG

Maria Antonietta Di Girolamo ENG

George Xylouris NCSRD

Nikos Dimitriou NCSRD

Anastasios Giannopoulos NKUA

Konstantinos Skianis NKUA

Panagiotis Gkonis NKUA

Panagiotis Trakadas NKUA

Marcin Plociennik PSNC

Jose Castillo Lema RHT

Konstantin Skaburskas SIXSQ

Nabil Abdennadher SIXSQ

John White SIXSQ

Francisco Carpio TUBS

Jordi Garcia UPC

Sergi Sánchez-López UPC

Xavier Masip-Bruin UPC

Hrvoje Ratkajec XLAB

Tomaz Martincic XLAB

Ivan Paez ZSCALE

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 3 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Document History

Version Date Change editors Changes

0.1 28/06/2023 SIXSQ First draft version of ToC

0.2 18/10/2023 SIXSQ Main contributions from all the partners.

1.0 20/10/2023 ATOS FINAL VERSION TO BE SUBMITTED

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Konstantin Skaburskas (SixSq) 18/10/2023

Quality manager Carmen San Román 20/10/2023

Project Coordinator Francesco D’Andria 20/10/2023

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 4 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ...2

Table of Contents ...4

List of Tables ..6

List of Figures ..7

List of Acronyms ..8

Executive Summary ...9

1 Introduction ..10

1.1 Purpose of the document ..10

1.2 Relation to other project work..10

1.3 Structure of the document ..10

2 Meta-Kernel Layer Module Design ..11

2.1 Design considerations ..11

2.2 Components and interfaces ..14

2.2.1 user.shell .. 16

2.2.2 user.shell-backend ... 16

2.2.3 security.IAM .. 17

2.2.4 discovery.lighthouse .. 17

2.2.5 runtime.job-manager .. 18

2.2.6 runtime.deployment-manager .. 18

2.2.7 runtime.matchmaker .. 19

2.2.8 runtime.execution-manager ... 20

2.2.9 runtime.execution-manager.offloader .. 20

2.2.10 continuum.aggregator .. 21

2.2.11 continuum.orchestrator-edge-cloud ... 22

2.2.12 cloud.infrastructure-service ... 22

2.2.13 edge.node ... 22

2.2.14 telemetry.agent .. 23

2.2.15 telemetry.controller .. 23

2.3 Detailed design ...24

2.3.1 Node On-Boarding... 24

2.3.2 Basic Application Deployment .. 25

2.3.3 Collect and visualise Metrics and Logs ... 26

3 Technology and Tools Selection for Implementation ..27

3.1 Lighthouse ..27

3.2 Continuum Manager ..28

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 5 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.2.1 Resource and Clustering Manager ... 28

3.2.2 Dynamic Policies Manager .. 34

3.3 Runtime Manager ...37

3.3.1 Job Management .. 37

3.3.2 Matchmaking ... 37

3.3.3 Aggregator ... 37

3.3.4 Distributed & Parallel Execution ... 38

3.3.5 Workload Offloader ... 40

3.4 Logging and Telemetry ..40

3.4.1 Metrics Collected ... 41

4 Development and Validation ..46

4.1 Development and Integration Processes and Tools..46

4.2 Validation ...48

4.2.1 Node On-Boarding... 48

4.2.2 Application Descriptor Definition and Basic Application Deployment 54

4.2.3 Distributed and Parallel Execution .. 57

4.2.4 Collect and visualise Metrics and Logs ... 59

5 Results and next steps ...63

6 Annexes ..64

6.1 RESTful API resource schemas and examples ..64

6.1.1 user.shell-backend-i ... 64

6.1.2 runtime.job-manager-i ... 64

6.1.3 runtime.matchmaker-i .. 67

6.1.4 runtime.execution-manager-i ... 70

6.1.5 continuum.aggregator-i .. 72

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 6 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1 Summary of the design components and their development and integration state for IT-1. _________ 15
Table 2 ICOS Meta-Kernel components, responsible partner, and selected technology. __________________ 47

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 7 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 2-1 ICOS Meta-Kernel conceptual architecture from D2.2 __________________________________ 11
Figure 2-2 ICOS Meta-Kernel and related ICOS ecosystem components considered for IT-1. _____________ 14
Figure 2-3 ICOS Meta-Kernel Layer component design for IT-1: functional layers, design components, and their

interfaces. In blue are the software components and interfaces developed for IT-1. Legend: s. - security; d. -

discovery; r. - runtime; c. - continuum; t. - telemetry. __ 16
Figure 2-4 Sequence diagram of the deployment management used in IT-1. ___________________________ 19
Figure 2-5 Meta-Kernel layer for IT-1: Basic Application Deployment. ______________________________ 25
Figure 2-6 Interaction between ICOS components to collect and visualise telemetry data. ________________ 26
Figure 3-1 Controller registration with one domain ___ 27
Figure 3-2 Controller registration with two domains ___ 28
Figure 3-3 Nuvla: Onboarding of Edge device - creation of NuvlaEdge in Nuvla. ______________________ 29
Figure 3-4 Nuvla: Onboarding of Edge device – helm command for deployment of NuvlaEdge on Edge device. 30
Figure 3-5 Nuvla: Onboarding of Edge device – Edge device is operational. __________________________ 30
Figure 3-6 NuvlaEdge conceptual architecture: components, relation to Nuvla.io, and management actions. _ 31
Figure 3-7 Nuvla: Discovered peripherals on edge device. __ 32
Figure 3-8 Sequence diagram of onboarding of a Kubernetes cluster to OCM._________________________ 34
Figure 3-9 Initial architecture of the Dynamic Policies Manager. ___________________________________ 35
Figure 3-10 High-level architecture of the Aggregator service. _____________________________________ 38
Figure 3-11 Composition of the technologies used for the implementation of the Logging and Telemetry Layer.40
Figure 3-12 Developed stack of Scaphandre, Prometheus, and Grafana, as implemented at the NKUA lab. __ 43
Figure 3-13 Recorded energy consumption curve of a node. _______________________________________ 44
Figure 3-14 Query parameters to request 'scaph_process_power_consumption_microwatts' metric for specific

pods. __ 44
Figure 3-15 JSON response with 'scaph_process_power_consumption_microwatts' metric. ______________ 45
Figure 4-1 Snapshot of the ICOS System Release schedule around IT-1 (source D2.2). __________________ 46
Figure 4-2 ICOS Project source code repository using GitLab. _____________________________________ 47

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 8 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /

acronym

Description

COE Container Orchestration Engine

Dx.y Deliverable number y belonging to WP x

WP Work Package

SUC System Use Cases

SLO Service Level Objective

SLI Service Level Indicator

SRE Site Reliability Engineering

MM Matchmaking service

JM Job Manager

OCM Open Cluster Management

VM Virtual Machine

OTLP OpenTelementry protocol

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 9 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

This document, titled "D3.1 Meta-Kernel Layer Module Integrated (IT-1)," serves as a comprehensive

report on the design, development, and implementation of the ICOS Meta-Kernel Layer Module for the

IT-1 delivery phase. The primary purpose of this document is to provide an account of the design and

implementation of the ICOS Meta-Kernel Layer Module (for IT-1), which is a critical component of the

ICOS project. This module plays a major role in the larger framework of the ICOS Meta Operating

System. To accomplish the development of the Meta-Kernel Layer Module, the conducted work

leverages the outcomes of D2.2 "ICOS Architecture Design IT-1" and D2.1 “ICOS ecosystem:

Technologies, requirements and state of the art”. It incorporates the architectural insights from D2.2

and requirements from D2.1, including the definition of the ICOS Meta-Kernel Layer, its core functions,

and how it interfaces with other layers within the ICOS Meta Operating System. The development work

and the document build upon the foundation laid by D2.2, expanding on the conceptual design with

concrete implementations.

This document is an essential resource for all stakeholders involved in the ICOS project, offering a

detailed account of the Meta-Kernel Layer Module's development and integration for IT-1. It

encapsulates the collective efforts of the project team in realising a fundamental component of the ICOS

Meta Operating System, bringing the project one step closer to its ultimate objectives.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 10 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This document is a report on the design, development, and implementation of ICOS Meta-Kernel Layer

Module for IT-1 delivery..

1.2 Relation to other project work

This document uses results of D2.2 “ICOS Architecture Design IT-1”. Namely, it considers the

elaborated architecture of ICOS Meta-Kernel Layer, its primary functions and interfaces with other

layers of the ICOS Meta Operating System.

1.3 Structure of the document

In section 2 “Meta-Kernel Layer Module Design”, we first present the System User Stories from D2.2

as generic targets for ICOS Alpha release and then, discuss and present the actual scope of the

implementation for IT-1 delivery of the Meta-Kernel Layer. We then proceed with the detailed design

of the components and their interfaces selected for the implementation and integration. Section 3,

“Technology and Tools Selection for Implementation”, elaborates on the selection of the tools for the

implementation of the components that are part of the IT-1. Then, section 5, “Development and

Validation”, first describes the development and integration processes selected for IT-1 and then

presents the IT-1 validation Test Cases and their results.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 11 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2 Meta-Kernel Layer Module Design

As shown in Figure 2-1, and detailed in D2.2, the Meta-Kernel layer is part of the ICOS system and

serves the following main functional purposes: management of the Cloud-Edge-IoT continuum

regarding resource and applications, management of the runtime of the applications, and collection and

storage of logging and telemetry from the managed resources and applications.

Figure 2-1 ICOS Meta-Kernel conceptual architecture from D2.2

This section:

 Defines the scope of the functionalities implemented for IT-1 delivery.

 Provides concrete design considerations and limitations for IT-1 delivery.

 Lists design components and interfaces.

 Provides the detailed design of IT-1.

2.1 Design considerations

This section presents the design considerations and limitations for IT-1 delivery.

Following D2.2 deliverable section 6.3 Table 9: “Functionalities ICOS Beta and ICOS Final releases”,

the target System Use Cases for ICOS Alfa release at M15 (November 2023) are presented with an

analysis below. The requirements of the System Use Cases (SUCs) that are considered to be

implemented are also provided below to give a better context for understanding the considerations on

the design decisions and selection of the components for the IT-1 implementation (these requirements

are described in detail in Tables 6-10 of deliverable D2.1).

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 12 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

A. Node On-Boarding (SUC_CC_1)

a. System Use Case SUC_CC_1 - Allows to add a new node to an ICOS Cloud Continuum

i. Requirement: CC_FR_04 Controller Communication: ICOS SHOULD allow the

communication of multiple ICOS controllers to exchange local views, policies and

information.

IT-1 Note 1: IT-1 is an early stage development and integration work;

bringing in cross ICOS Controller communication first requires basic ICOS

Controller functionality to be in place; the work on cross ICOS Controller

communication will be done after IT-1 for ICOS Beta release.

ii. Requirement: OP_FR_04 Resource Descriptor Data-model: ICOS MUST define a

data model to be used for describing each device/node resource capability in order to

be accessible by the metaOS

IT-1 Note 2: It will be implemented as part of the external infrastructure

services’ resource schema of Cloud and Edge Orchestrators.

B. Application Descriptor Definition (SUC_RT_1)

a. System Use Case SUC_RT_1 - Allows the definition of an application and all the details for its

deployment

i. Requirements: NONE.

IT-1 Note 3: Definition of user application description for ICOS Controller is one

of the primary goals for IT-1 delivery.

ii. User Stories: US.4, US.7

C. Basic Application Deployment (SUC_RT_4)

a. System Use Case SUC_RT_4 - Allows to deploy an application in an ICOS Instance

i. Requirement: CC_FR_01 Resources Catalog: The ICOS MUST support a resource

registry to record (publish) available resources to operate application workloads.

IT-1 Note 4: This is implemented as part of the Aggregator service that

contains all the resources of the IoT-Edge-Cloud continuum.

ii. Requirement: CC_FR_03 Topology Awareness: ICOS should be able to monitor and

maintain the topology of the created Cloud Continuum.

IT-1 Note 5: This is implemented as part of the Aggregator service.

iii. Requirement: CM_FR_01 Smart resources first allocation and migration: ICOS

MUST be able to find a near-optimal match (considering different metrics, such as

response time, energy footprint, monetary cost) in terms of nodes to run one business

application taking into account nodes performance, reliability and availability

IT-1 Note 6: A simple application match-making for initial placement (day-0

application deployment) at the cloud or edge is implemented for IT-1.

Application migration for optimal re-provisioning will be worked on for the

next milestones (ICOS Betta release).

iv. Requirement: CM_FR_03 Function execution request: ICOS COULD provide a

mechanism to request the execution of a function on the continuum being totally

transparent of the device that will host the execution.

IT-1 Note 7: This functionality was not selected for the scope of IT-1. It will

be considered for the implementation in the next milestones.

v. Requirement: CM_FR_09 Green Policies Monitoring: ICOS MUST be able to

determine when reserved resources are not used or required for proper application

operation at some point in time and provide an alert system and offer Service Level

Objective (SLO) modifications accordingly.

IT-1 Note 8: Monitoring of the edge and cloud resources

(CPU/RAM/Disk/Network) is implemented in IT-1. Alerting and decision

making around green policies based on the collected telemetry from the user

applications and resources will be done in the scope of the next milestones.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 13 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

vi. Requirement: CM_FR_13 Parallelism exploitation: ICOS MUST provide a

mechanism that allows service components to decompose application components into

sub-components (or tasks) to enable massive/distributed parallel execution (and achieve

lower response times and a better resource exploitation).

IT-1 Note 9: This was not considered as part of the IT-1 delivery. This

functionality will be designed and implemented in the scope of the next

milestones.

D. Collect and visualise Metrics and Logs (SUC_RT_6, SUC_RT_7)

a. System Use Case SUC_RT_6 - Review the status and the logs of all the application

components

i. Requirement: CM_FR_06 Monitoring: ICOS MUST collect monitoring

infrastructure-level and application-level metrics from various sources as well as

provide appropriate solutions to preserve and access historical performance data.

Collecting metrics from already existing monitoring tools on the infrastructures should

be supported.

IT-1 Note 10: See IT-1 Note 8 regarding the metrics collection. The initial

implementation for the long-term storage of the collected telemetry is

provided.

ii. Requirement: OP_FR_05 Monitoring system performance: ICOS MUST display

resources and application workloads performances in real time as well as historical

performance data within a graphical view. This view should allow the service operator

to modify the data to display.

IT-1 Note 11: See IT-1 Note 10.

b. System Use Case SUC_RT_7 - See and query the performance metrics related to the

resources that are hosting the application and the metrics generated by the application itself

i. Requirement: CM_FR_06 (see above)

ii. Requirement: CM_FR_07 SLO monitor to raise a corrective plan: ICOS MUST

monitor application workload SLO to raise remedial plan as well as corrective actions

when QoS levels are violated.

IT-1 Note 12: SLO monitoring of application workload was not considered

for the IT-1 delivery. This topic requires more research and solution-level

design for coupling of the SLO definition policies, metrics and successive

generation of the remedial plan and effectively, the corrective actions.

The IT-1 notes provided along with the SUCs and associated requirements (IT-1 Note 1-12), define the

scope for the functionalities of IT-1 delivery. Based on that, we define the following constraints:

 Constraint A: The IT-1 delivery supports only a single ICOS Controller (IT-1 Note 1).

 Constraint B: The IT-1 delivery doesn’t support application migration (IT-1 Note 6).

 Constraint C: The IT-1 delivery doesn’t contain FaaS (IT-1 Note 7).

 Constraint D: The IT-1 delivery doesn’t contain alerting and decision making around green policies

(IT-1 Note 8).

 Constraint E: The IT-1 delivery doesn’t contain application parallelism exploitation (IT-1 Note 9).

 Constraint F: The IT-1 delivery doesn’t contain application SLO monitoring and hence Policy

Manager component (IT-1 Note 12).

Taking into account the considerations on the system use cases and respectively derived constraints,

below we present the ICOS component level architecture implemented for IT-1 as part of Meta-Kernel

Layer.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 14 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 2-2 ICOS Meta-Kernel and related ICOS ecosystem components considered for IT-1.

In the following section we define the design components and their respective interfaces. Only

components that are part of the ICOS IT-1 delivery are considered.

2.2 Components and interfaces

This section lists and describes the critical design components and interfaces that were implemented and

integrated for IT-1 delivery.

Below is the mapping of the component names from the architecture diagram to the sub-domain specific

component design naming:

 Identity and Access Manager - security.IAM

 Shell - user.shell

 Lighthouse - discovery.lighthouse

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 15 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 ICOS Controller

- Shell Backend - user.shell-backend

- Job Manager - runtime.job-manager

- Matchmaker - runtime.matchmaker

- Execution Manager - runtime.execution-manager

- Execution Manager Offloader - runtime.execution-manager.offloader

- Aggregator - continuum.aggregator

 ICOS Agent

- Deployment Manager - runtime.deployment-manager

 Edge and Cloud Orchestrator - continuum.orchestrator-edge-cloud

 Edge Agent - continuum.edge-agent

 Logging and Telemetry

- Telemetry Agent - telemetry.agent

- Telemetry Controller - telemetry.controller

The table below gives an overview of the new components that were developed, as well as of the existing

ones that were employed and of the ones that were integrated as part of the Meta-Kernel Layer. In cases

where an existing tool was used for integration a name and the reference are provided.

Table 1 Summary of the design components and their development and integration state for IT-1.

Component Developed Integrated

user.shell + +

user.shell-backend + +

security.IAM not applicable (KeyCloak1) -

discovery.lighthouse + +

runtime.job-manager + +

runtime.deployment-manager + +

runtime.execution-manager extended (COMPSs2) (Constraint E)

runtime.execution-manager.offloader extended (COMPSs) (Constraint E)

runtime.matchmaker + +

continuum.aggregator + +

continuum.orchestrator-edge-cloud not applicable (OCM3, Nuvla4) +

continuum.edge-agent not applicable (OCM klusterlet5,

NuvlaEdge6)

+

telemetry.agent extended (OpenTelemetry Collector,7

Prometheus Node Exporter8)

+

telemetry.controller not applicable (Thanos9, Grafana10) +

1 https://www.keycloak.org
2 https://compss.bsc.es
3 https://open-cluster-management.io
4 https://nuvla.io
5 https://open-cluster-management.io/concepts/architecture/
6 https://github.com/nuvlaedge
7 https://opentelemetry.io/docs/collector/
8 https://github.com/prometheus/node_exporter
9 https://thanos.io/
10 https://grafana.com/

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 16 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Following the table above Table 1, the picture below presents the design components and their interfaces

of ICOS Continuum that are part of IT-1 delivery. The design components and their provided and

required interfaces are described in the subsections that follow.

Figure 2-3 ICOS Meta-Kernel Layer component design for IT-1: functional layers, design

components, and their interfaces. In blue are the software components and interfaces developed for IT-

1. Legend: s. - security; d. - discovery; r. - runtime; c. - continuum; t. - telemetry.

2.2.1 user.shell

Command line interface for end-user and Cloud/Edge operator to access the ICOS ecosystem. Connects

to user.shell-backend [TUBS] via required interface user.shell-backend-i.

2.2.2 user.shell-backend

API server providing a single entry point to the ICOS ecosystem. Contacted by user.shell [TUBS] on

user.shell-backend-i interface.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 17 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2.2.2.1 user.shell-backend-i

Provided RESTful API exposing the resources and actions described below.

API Endpoint

All URIs are relative to http://${CONTROLLER_ADDRESS}/api/v3

HTTP request Description

GET /healthcheck Health check

POST /deployment/ Creates a new deployment

DELETE

/deployment/{deploymentId}

Deletes a deployment by ID

GET /deployment/{deploymentId} Get deployment by ID

GET /deployment/ Returns a list of deployments visible to the concrete user

PUT /deployment/{deploymentId} Updates a deployment

GET /resource/{resourceId} Get resource by ID

GET /resource/ Returns a list of resources

The schemas of the resources are provided in the Appendix section 6.1.1.

2.2.3 security.IAM

The Identity and Access Management component is the component in the security layer (WP4)

responsible for the authentication and the authorization of users in the ICOS System. The component

exposes an API to trigger authentication flows, request and validate authentication tokens. A detailed

description of the component and the APIs exposed is provided in deliverable “D4.1 Data Management,

Intelligence and Security Layers (IT-1)”. In IT-1, the ICOS Shell and the Lighthouse components have

been integrated with this component to authenticate all the requests from the users.

2.2.3.1 security.IAM-i

Provided RESTful API exposing identity and access management functionalities. Implementation

specific. For concrete selected technology and tools see section Technology and Tools Selection for

Implementation [ALL].

2.2.4 discovery.lighthouse

This service maintains a list of all ICOS Controllers currently part of the ICOS continuum. This list can

be retrieved by any component that needs to make contact with a controller; namely the ICOS user.shell

[TUBS] for configuration through an instance of the ICOS user.shell-backend [TUBS] and the ICOS

Agent to find a controller through which to join the ICOS Continuum.

2.2.4.1 discovery.lighthouse-i

Provided RESTful API exposing the resources and actions described below.

API Endpoint

All URIs are relative to http://${LIGHTHOUSE_ADDRESS}/api/v3

HTTP request Description

POST /controller/ Adds a new controller

GET /controller/ Returns a list of controllers

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 18 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

The schemas of the resources are provided below.

/controller/ resource data model

GET returns list of the maps of the following schema

Attribute Name Type Description

name String Name of the controller

address String IP address of the controller

2.2.5 runtime.job-manager

This service enables ICOS Controller to manage and offload the workload based on the incoming

application description and placement information from the runtime.matchmaker [UPC].

2.2.5.1 runtime.job-manager-i

Provided RESTful API exposing the resources and actions described below.

API Endpoints

All URIs are relative to http://${CONTROLLER_ADDRESS}

HTTP request Description

GET /jobmanager/healthcheck Health check

POST /jobmanager/jobs/create Creates a new Job with state “Created”

DELETE /deployment/jobs/{deploymentId} Deletes a Job by ID

GET /deployment/jobs/{deploymentId} Finds a Job by its ID

PUT /deployment/jobs/{deploymentId} Updates a Job

GET /deployment/jobs/ Returns a list of Jobs

GET /deployment/jobs/executable List Jobs that can be executed

API Schemas

The schemas of the resources are provided in Appendix section 6.1.2.

2.2.6 runtime.deployment-manager

This service enables ICOS Controller to start user applications on the resource managed by

continuum.orchestrator-edge-cloud. The service doesn’t export any HTTP endpoints. The service

consumes runtime.job-manager-i from runtime.job-manager component.

Below we present the sequence diagram that shows the deployment management workflow between the

corresponding design components. For any technology and instances of continuum.orchestrator-edge-

cloud, the pulled jobs are handled as described in the diagram.

about:blank

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 19 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 2-4 Sequence diagram of the deployment management used in IT-1.

Note: for a Job to be pullable/executable by the runtime.deployment-manager, this job must comply with

the following rule:

 Job.State is “Created” and Job.Locker is False or Job.State is “Progressing” and Job.Locker is True

and Job.UpdatedAt is less than 300 seconds. This rule is validated by the runtime.job-manager.

2.2.7 runtime.matchmaker

It receives an application descriptor and requests the continuum.aggregator the ICOS topology. The

service finds the most appropriate nodes of the edge-to-cloud continuum to execute the requested user

application on It receives the user application description and requests the continuum.aggregator the

ICOS topology. The service is invoked from the runtime.job-manager through the provided interface

runtime.matchmaker-i.

2.2.7.1 runtime.matchmaker-i

Provided RESTful API exposing the resources and actions described below.

API Endpoints

All URIs are relative to http://${MATCHMAKER_ADDRESS}

HTTP request Description

GET / Displays a welcome message.

POST /matchmake Receive a JSON with the description of the application. JSON response

with the best matching cluster and node. This resource in turn calls the

continuum.aggregator-i to receive the topology.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 20 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

API Schemas

The request/response schemas of the resources are provided in the Appendix section 6.1.3.

2.2.8 runtime.execution-manager

The purpose of the component is to parallelize and distribute the workload of an application. Each

application container will run a process providing a REST API that allows requesting the execution of

a function or python script and managing the resources onto which its workload can be offloaded. The

REST API is defined by the runtime.execution-manager-i interface.

2.2.8.1 runtime.execution-manager-i

Provided RESTful API exposing the resources and actions described below.

API Endpoints

All URIs are relative to http://${CONTAINER_ADDESS}

HTTP request Description

GET /COMPSs/test Health check

GET /COMPSs/resources Lists the pool of resources where to offload onto

PUT /COMPSs/addResources Increases the resource pool with some resources

PUT /COMPSs/removeResource Shrinks the resource pool with some resources

PUT /COMPSs/removeNode Removes all the resources from one node

PUT /COMPSs/lostNode Removes all the resources from one node and re-submits the

workload currently offloaded onto it

PUT /COMPSs/startApplication Triggers the asynchronous execution of a function

API Schemas

The request/response schemas of the resources are provided in the Appendix section 6.1.4.

2.2.9 runtime.execution-manager.offloader

The execution offloader pursues establishing a common interface for other applications (in this case, the

execution-manager) to submit tasks and transfer data among nodes in the continuum through multiple

protocols. The component is offered as a Java library and several implementations (Adaptors) are

included.

JAVA API

es.bsc.compss.comm.CommAdaptor

Class for managing general operations through the adaptor.

Method Name Description

init Initialises the Communicator

constructConfiguration Creates a Configuration object describing how a resource should be

contacted

getStarterCommand Creates a command to start the client of the remote worker through SSH

(if needed)

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 21 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Method Name Description

initWorker Initialises a COMPSsWorker instance that represents the node and will

be used to interact with the node

getPending Lists all the data operations that haven’t been fully executed

completeMasterURI Extends a data location with necessary meta-data to contact the specific

node

stopSubmittedJobs Requests the cancellation of all the jobs offloaded onto remote nodes

stop Stops the Communicator

es.bsc.compss.types.COMPSsWorker;

Each COMPSsWorker represents a remote node.

Method Name Description

getName Returns the name of the node

getAdaptor Returns the Name of the CommAdaptor being used

start Starts the worker process in the remote node

setInternalURI Initialises a COMPSsWorker instance that represents the node and will

be used to interact with the node

newJob Creates a new Job description to execute a task on the remote node

sendData Tells the node to send a data to a third node

obtainData Tells the node to obtain a data value

stop Stops the worker process in the remote node

es.bsc.compss.types.job.Job;

Each Job represents the execution of a Task (specific invocation to a method) on a remote resource. The

implementation of this interface should manage the necessary communications with the remote node to

execute that task.

Method Name Description

getJobId Returns the identifier of the Job

getTaskId Return the identifier of the task

stageIn Copies all the necessary input data into the remote node

submit Orders the execution of the Job into the remote node

cancel Cancels the execution of the job into the remote node

2.2.10 continuum.aggregator

This is a service that transforms the infrastructure telemetry data stored on a time series database into

the ICOS Infrastructure Taxonomy data structure which is served to the runtime.matchmaker [UPC] via

continuum.aggregator-i interface.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 22 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2.2.10.1 continuum.aggregator-i

Provided RESTful API exposing the resources and actions described below.

HTTP request Description

GET / Returns the infrastructure static and dynamic data.

The request/response schemas of the resources are provided in the Appendix section 6.1.5.

2.2.11 continuum.orchestrator-edge-cloud

This component is external to ICOS. It acts as an aggregator and orchestrator service of the Cloud and

Edge resources as defined in cloud.infrastructure-service and edge.node. It provides cloud and edge

device management and application orchestration capabilities on top of the resources it aggregates. The

ICOS-compatible Orchestrator for IT-1 is expected to expose the following functionalities via its public

interface continuum.orchestrator-edge-cloud-i.

 Inventory of Edge and IoT Devices

 Inventory of Cloud resources

 Application deployment and lifecycle management at the Edge and Cloud

 Authentication and authorization

2.2.11.1 continuum.orchestrator-edge-cloud-i

Public interface of Cloud and Edge Orchestrator. It is an Orchestrator implementation specific RESTful

API. To invoke various actions or query information, the ICOS Controller connects to the provided

Orchestrator API via Orchestrator specific connectors (e.g. for deployment management:

runtime.deployment-manager).

2.2.11.2 continuum.orchestrator-edge-cloud-i.deployment

Deployment instantiation and lifecycle management interface. It is an Orchestrator implementation

specific RESTful API. Used by runtime.deployment-manager.cloud-edge-orch.driver [ATOS] for

application deployment lifecycle management.

2.2.12 cloud.infrastructure-service

Resources available on Cloud

 IaaS (e.g. VM management, S3, etc); exposed via cloud.infrastructure-service.iaas-i

 Container Orchestration Engine (COE) clusters; exposed via cloud.infrastructure-service.coe-i

2.2.12.1 cloud.infrastructure-service.iaas-i

Public IaaS interface of a cloud service.

2.2.12.2 cloud.infrastructure-service.coe-i

Public COE interface of COE running on cloud.

2.2.13 edge.node

Edge node running COE.

2.2.13.1 edge.node-i

COE of types:

 Docker

 Docker Swarm

 Kubernetes

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 23 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2.2.14 telemetry.agent

ICOS implements a full observability framework to effectively and efficiently acquire data on the status

and the performance of the infrastructures and the applications and to take decisions to improve the

usage of resources and the performance of the system. In IT-1, the components responsible for managing

the telemetry data are the “Telemetry Agent” and the “Telemetry Controller”. The Agent is deployed in

the computational nodes and is responsible to collect data (i.e. metrics and logs) from the system, to

appropriately label it and to transmit it to the Telemetry Controller. The Controller is responsible for

receiving the data, storing it and providing interfaces to query and visualise it. In the following

development iterations these components will be enriched with support for acquiring more types of data,

alerting and analysis tools, and authentication and authorization features.

The telemetry.agent has the goal of implementing a generic mechanism to collect metrics and logs from

the systems, from other ICOS components and from user applications, and to transmit them where they

can be stored, analysed and accessed from other components.

The Telemetry Agent is deployed in the cloud and edge nodes during the on-boarding process.

Depending on the characteristics and capabilities of the node, it is properly configured to acquire the

telemetry data. The Agent acquires the logs of the system and the applications running in the node, by

reading the corresponding files in the node's filesystem and watching for changes in these files. For

collecting metrics, the Agent supports both push and pull paradigms. In the pull paradigm the Agent is

configured via endpoints that expose metrics. On a regular basis, the Agent reads metrics from these

endpoints. The Telemetry Agent also implements mechanisms to automatically discover metrics

endpoints available on the system. In push mode, the components of the infrastructures that generate or

collect metrics are responsible for sending metrics to the Telemetry Agent.

When data is received, the Telemetry Agent applies simple processing of the received data, like adding

ICOS-related metadata (e.g. the ICOS Node ID), aggregating (reducing the amount of data) or filtering

(e.g., removing unnecessary metrics).

Finally, the Agent transmits the data to the configured Telemetry Controller. The Agent will also be able

to send data to another Agent. This is an important feature in deployment scenarios where the Telemetry

Agent in the node has no network connectivity with the Controller. In these cases, data can be

transmitted from the node to the controller through a chain of intermediate Telemetry Agents that act as

bridges. Other reasons for having intermediate Telemetry Agents can be data efficiency (the agents in

the middle can further aggregate and filter data), caching of data (e.g. in case of loss of network

connections), or utilising data for taking local decisions.

Concerning data models, the Agent supports collection of metrics both in the Prometheus text format11

and in the OpenTelemetry Protocol (OTLP) format12, while transmitting data using the OTLP format

only. For the transmissions both HTTP and gPRC13 are supported.

2.2.15 telemetry.controller

The telemetry.controller runs in the ICOS controllers and offers an interface to acquire data transmitted

by the Telemetry Agents running in the nodes registered to the ICOS Controller where it is running. The

acquired data is stored in long-term storage. Given the different nature of data (e.g., metrics and logs)

different specialised storage technologies are adopted to store the different types of data. This guarantees

high efficiency in the storage of large amounts of data for a long retention period. The controller offers

an API for querying the stored data. This will be used by the ICOS components to access the data. In

the future development iterations, the Controller will also offer an API to subscribe to changes in metrics

and definition of alerting rules.

11 https://prometheus.io/docs/concepts/data_model/#notation
12 https://opentelemetry.io/docs/specs/otel/protocol/
13 https://grpc.io/

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 24 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Finally, the telemetry.controller provides an interface to visualise the data via a web application. At the

moment this is intended to be used by administrators for assessing the status of the system and debugging

issues. In the future, the access will be allowed to users that will be able to see data related to their

applications running in the system.

2.2.15.1 telemetry.controller-i.query

Provided RESTful API exposing the resources and actions described below.

API Endpoints

All URIs are relative to /api/v1

HTTP request Description

GET /query Perform a query to access metrics. The query must be sent in the “query” string

parameter and must be in PromQL14 language.

POST /query Using the POST method when specifying a large query that may breach server-

side URL character limits.

The schemas of the resources are provided below.

/api/v1/query

Attribute Name Type Description

icos_agent_id Long Unique identifier of the deployment

name String Name of metrics

2.3 Detailed design

Based on the above listed targets, design considerations and constraints, below, we present the

component and sequence diagram that define the ICOS and external components and their interactions

for the Meta-Kernel layer implementation at IT-1.

2.3.1 Node On-Boarding

The onboarding of ICOS Node in the scope of IT-1 results in adding continuum.orchestrator-edge-cloud

instances to the ICOS Controller via the ICOS Agent. In this case it is assumed that the onboarding of

the actual compute and storage resources of edge.node and cloud.infrastructure-service happens

internally in continuum.orchestrator-edge-cloud via an implementation specific mechanism of the

concrete continuum.orchestrator-edge-cloud instance. Following the design component Figure 2 3 for

IT-1, the binding element between continuum.orchestrator-edge-cloud and ICOS Controller is

runtime.deployment-manager component that is part of the ICOS Agent.

The processes of the onboarding of edge.node and cloud.infrastructure-service to the concrete selected

implementations of continuum.orchestrator-edge-cloud can be found in section 3.

The enrichment of the Edge Cluster to become ICOS-compliant is described in the following diagram:

14 https://prometheus.io/docs/prometheus/latest/querying/basics/

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 25 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

The enrichment of Cloud cluster is not yet applicable, unless this cluster is intended to be an ICOS

Controller. If so, the following components need to be provided during the on-boarding as well:

 Shell Backend - user.shell-backend

 Job Manager - runtime.job-manager

 Matchmaker - runtime.matchmaker

 Execution Manager - runtime.execution-manager

 Execution Manager Offloader - runtime.execution-manager.offloader

 Aggregator - continuum.aggregator

2.3.2 Basic Application Deployment

Note: The application deployment process operates using the following Application Models

 ICOS Application Model - describes user application and provided by user to the user.shell

 ICOS Application Deployment Model - ICOS Controller internal representation of the Application

Model for deployment built based on the ICOS Application Model plus actual deployment target and

other bookkeeping information.

Figure 2-5 Meta-Kernel layer for IT-1: Basic Application Deployment.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 26 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2.3.3 Collect and visualise Metrics and Logs

The sequence diagram in Figure 2-6 presents how the ICOS components interact to collect and visualise

telemetry data. In the section, some examples of metrics endpoints are shown, but potentially additional

endpoints will be used in ICOS.

Figure 2-6 Interaction between ICOS components to collect and visualise telemetry data.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 27 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3 Technology and Tools Selection for

Implementation

This section lists the tools that were used to implement the design components and interfaces described

in the previous section.

3.1 Lighthouse

For IT-1, the lighthouse is a web service that contains a list of ICOS controllers. The lighthouse follows

the OpenAPI specification to add new controllers and to retrieve the list of existing ones. The ICOS

controllers are responsible for adding themselves to the lighthouse and to update their entries every 60

seconds. Each entry in the list has a timer associated which is reset when an update from the specific

ICOS controller is received. If this update is not received from the ICOS controller and a timeout occurs,

the entry is deleted from the list assuming the ICOS controller is not available anymore.

The lighthouse is implemented in Go and it is publicly accessible in http://lighthouse.icos-

project.eu:8080/api/v3/controller.

Assuming the lighthouse is deployed in http://lighthouse.icos-project.eu, we now show an example

where ICOS controllers and agents join the system. Figure 3-1 shows a node in Domain 1 that is

registered into the lighthouse with reachable domain “dom1.icos-project.eu”. When new nodes (node

11 and 12) from the same Domain 1 attempt to join the system, they first query the lighthouse to retrieve

the list of available controllers. Since there is already an existing ICOS controller within the same

domain, nodes 11 and 12 become ICOS agents from the already existing controller.

Figure 3-1 Controller registration with one domain

Following the same procedure, when a new node from Domain 2 attempts to join the system, the node

first retrieves the list of available controllers from the lighthouse. In this case, since the existing ICOS

controller is in another domain, the new node from Domain 2 becomes an ICOS controller itself, as

shown in Figure 3-2.

http://lighthouse.icos-project.eu:8080/api/v3/controller
http://lighthouse.icos-project.eu:8080/api/v3/controller
http://lighthouse.icos-project.eu:8080/api/v3/controller

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 28 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 3-2 Controller registration with two domains

In this case the new node registers into the lighthouse as “dom2.icos-project.eu”. When a new node

(node 21) from Domain 2 attempts to join the system, it first retrieves from the lighthouse the list of

registered controllers and, in this case, the node joins to the controller in Domain 2.

In the same manner, the shell client and GUI retrieve the controller endpoints from the lighthouse to

enable ICOS management for the user.

3.2 Continuum Manager

3.2.1 Resource and Clustering Manager

The following functionalities of the ICOS Resource and Clustering Manager (continuum.orchestrator-

edge-cloud) were realised in IT-1

 Edge device and cloud resource onboarding

- addition of Kubernetes and Docker based Edge devices to the ICOS continuum.

- addition of Cloud resource endpoints to the ICOS continuum.

 Deployment of user applications on the onboarded edge resources.

This was achieved by integration with the following technological tools that were used as ICOS

Resource and Clustering Managers

 Nuvla https://nuvla.io

 OCM https://open-cluster-management.io/

3.2.1.1 Nuvla as Resource and Clustering Manager

For IT-1, Nuvla service was provided to the project for integration on https://nuvla.io endpoint

(Nuvla.io). Nuvla.io is a B2B Platform for cloud and edge management and applications orchestration.

The service is fully managed by SixSq. As this is described in deliverable D2.1, Nuvla.io service consists

of two main components - Nuvla and NuvlaEdge, where Nuvla is the B2B Platform providing the

management API and NuvlaEdge is the agent that is deployed on edge devices.

The source code of Nuvla is available at https://github.com/nuvla. The source code for NuvlaEdge is

available at https://github.com/nuvlaedge.

The Nuvla API documentation is available at https://docs.nuvla.io/.

https://nuvla.io/
https://nuvla.io/
https://github.com/nuvla
https://github.com/nuvlaedge
https://docs.nuvla.io/

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 29 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Onboarding

The process of onboarding of Edge devices running Kubernetes or Docker COE to Nuvla is described

in the Nuvla online documentation here https://docs.nuvla.io/nuvlaedge/installation/. In essence, (on the

example of Kubernetes COE based edge device) the process consists of first creating the Edge device

reference in Nuvla.io platform (see Figure 3-3)

Figure 3-3 Nuvla: Onboarding of Edge device - creation of NuvlaEdge in Nuvla.

and then, running the provided Helm command to provision the NuvlaEdge on the device (see Figure

3-4)

https://docs.nuvla.io/nuvlaedge/installation/

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 30 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 3-4 Nuvla: Onboarding of Edge device – helm command for deployment of NuvlaEdge on

Edge device.

After NuvlaEdge is deployed, it connects to Nuvla.io and commissions itself into an operational state

(see Figure 3-5).

Figure 3-5 Nuvla: Onboarding of Edge device – Edge device is operational.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 31 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

The Figure 3-6 below shows the required and optional NuvlaEdge components deployed as part of the

onboarding.

Figure 3-6 NuvlaEdge conceptual architecture: components, relation to Nuvla.io, and management

actions.

Peripheral discovery

Nuvla Platform provides the functionality of the discovery of the peripherals. NuvlaEdge peripheral

discovery component can discover the following peripheral types

 bluetooth

 gpu

 modbus

 network

 usb

The peripheral discovery process on the edge devices is continuous. The discovered peripherals and

information about them are published to Nuvla and available via API and can be seen on the web UI

(see Figure 3-7).

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 32 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 3-7 Nuvla: Discovered peripherals on edge device.

3.2.1.2 OCM as Resource and Clustering Manager

Open Cluster Management is a Kubernetes multi-cluster management tool. It allows the Kubernetes

operator to orchestrate and manage a set of clusters. The OCM architecture is based on originally defined

by Kubernetes pattern “hub-kubelet” where two main components are defined:

 Hub Cluster: denotes the cluster containing the multi-cluster control plane for OCM, traditionally,

this cluster must only execute management workload and contain a limited number of Kubernetes

resources (services, statefulSets, etc…).

 Klusterlet: indicates that cluster is being managed by the Hub Cluster. Klusterlet executes a “work-

agent” responsible for pulling workload from Hub Cluster and ensures to achieve the desired state of

resources specified by “placement-controller” within the Hub Cluster.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 33 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 Addons & Addon Components are not part of the scope of this document and won’t be highlighted.

 Registration Components provide a way to onboard new managed clusters to the existing setup, as

described below.

Open Cluster Management Orchestrator offers a registration process that allows clusters and nodes to

join the orchestration ecosystem. This ecosystem is only part of the ICOS Ecosystem. For this reason,

the process provided by OCM is enriched with ICOS-specific components to be installed during the

onboarding. The following sequence diagram describes the basic OCM-onboarding process, that is valid

for any kind of cluster or node to onboard:

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 34 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 3-8 Sequence diagram of onboarding of a Kubernetes cluster to OCM.

3.2.2 Dynamic Policies Manager

As reported in the deliverable D2.2 ICOS Architecture Design, DPM is responsible for the management

of the policies (technical and business performance) and the detection and prediction of violations of

such policies in the running application. Based on this, we identify three sub-components of the DPM

(as shown in the DPM architecture Figure 3-9):

 Policies Configurator: responsible for configuring the policy metrics specifically the alter metrics

and sending themes to the Monitoring and Telemetry component.

 Policies Evaluator: responsible for checking out the policy alert and values received from the

Monitoring and Telemetry components and sending them to the Policy Violation Manager if a

violation is identified.

 Policies Violation Manager: is responsible for storing the violation sent by the Policy Evaluator and

sharing it with the other ICOS services (for example Job Manager).

The Figure 3-9 provides the initial architecture of the Dynamic Policies Manager.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 35 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 3-9 Initial architecture of the Dynamic Policies Manager.

How it works

The Dynamic Policy Manager starts to define and send the policy configured to the Monitoring and

Logging component. The DPM creates and sends the policy information to the Monitoring and

Telemetry component. The monitoring component sends an alert and the values of the violation -if

needed- to the Policy Evaluator. The Policy Evaluator sends the alert violation to the Policy Violation

Manager.

The Policy Violation Manager stores and analyses the violation and if the remediation action is provided

by itself; it then sends the remediation action to the Job Manager otherwise the Policy Violation Manager

sends a request of the suggested action to the intelligence block.

An API HTTP REST will be implemented to manage the communication and the work of the Dynamic

Policy Manager: work and implementation of that will be reported in deliverable “D3.2 Meta-kernel

Layer Module Developed (IT-2)”.

How to implement the policies

The complexity of ICOS infrastructures makes it difficult to guarantee optimizations and high-

performance levels without resorting to specific control tools. In particular, to evaluate the performance

of applications in the ICOS ecosystem it is necessary to choose reference metrics, on the basis of which

it will determine the level of functioning and then deduce any necessary improvements. It is important

that these parameters allow us to observe both how data moves from one device to another within ICOS

systems, and how the information is processed and retrieved.

To perform this, we decided to define and analyse the first version of the Dynamic Policy Manager,

including the performance policies.

In general, the performance policies are a set of performance objectives used to define the method with

which the data is stored on the ICOS platform in order to achieve optimal performance for the specific

application. Observability and performance monitoring data tools can be a valuable aid and support for

designing and implementing these policies.

In general observability data tools allow operators to monitor their clusters or their systems. There

are three pillars of observability: metrics, logs, and traces.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 36 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Some tools were investigated in order to determine whether they can be considered as a possible

solution for the ICOS ecosystem by plugging them in the ICOS architecture. The first considered tool

was OPNI (https://opni.io/).Although this tool allows defining, monitoring, and sending alerts for SLO;

its SLO/SLI (Service Level Indicator) follows the Site Reliability Engineering (SRE) approach that is

focused on finding issues in the infrastructure operation based on Good Events and Bad Events; but this

is not fully in line with the objective of the ICOS ecosystem, as it is more focused on the performance

of applications.

In addition, the SLO monitoring is not “cross-cluster” and is similar to what can be achieved using

Prometheus Alerting Rules. Other reasons for not using OPNI are the following:

 The ICOS Performance Policies model requires more features than those that OPNI provides. For

example, ICOS Performance Policies should include the possible remediation actions.

 It is not a unified UI.

 The development phase is still very active.

 The documentation is fragmented, poor, and not always up-to-date.

For this reason, OPNI was not selected and it was decided to define the ICOS policies based on other

open source tools such as Prometheus (https://prometheus.io/) and Thanos (https://thanos.io/).

The final ICOS policies model will be provided in the deliverable D3.2 about the policies language

model used and its implementation. Below in the code snippet we provide an example of the policies

model that acts as an initial implementation of the model.

The rule should be created as an XML file that will include all necessary information (rule statement)

and will be loaded through a specific field (rule_files) in the DPM configuration. This configuration

includes:

 policies groups identify the collection of the information for the performance policies

 name: name of the policy, for example, policy1.

 type: type of the policy in this first version we have only Performance policy

 apply: it is a record that contains information about the component that the policies is apply to as for

example name of the component

 expression: it provides a mathematical expression aimed at defining a very specific limit beyond or

below which a violation occurs, for example avg_execution_time_predict < 5m : a violation occurs

when the average application performance time lasts for more than five minutes; the application

duration time is violated if it exceeds ten minutes.

 for time duration

 remediations: list of remediation actions to adopt. It is based on the type of violation.

policies:

- name: String,

type: String,

applyTo:

- component1: nameofcomponent1 : String,

 expression: mathematical expression about the time range limit about the application performance,

 for time duration

 remedations:

- list of actions

Example

policies:
 - name: policy1
 type: performance
 apply_to:
 - component-1
 expression: avg_execution_time_predict < 5min
 for: 10m
 remediations:
 - scale_pod

https://opni.io/
https://prometheus.io/
https://thanos.io/

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 37 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.3 Runtime Manager

3.3.1 Job Management

Runtime.job-manager was implemented using Go language and following the good practices regarding

the microservices. The source code can be found in the following repository:

https://production.eng.it/gitlab/icos/meta-kernel/job-manager

This microservice implements the RESTful API described in the section runtime.job-manager

[ATOS] and integrated in the testbed environment. Whenever it is rolled out it exposes the RESTful

API defined by this interface runtime.job-manager-i.

3.3.2 Matchmaking

The Matchmaking service (MM) is responsible for providing the best topology for the execution of an

ICOS application. It is part of the Job Manager (JM) component, and is invoked by the JM upon

reception of an application execution request from an ICOS user.

The MM receives from the JM an application description model and requests to the Aggregator service

(see next subsection) the current ICOS resources infrastructure. The MM will then find an optimal

infrastructure topology (best matching between the app description and the ICOS infrastructure)

supported by the Intelligence Layer, and consider any application constraints in terms of required

hardware and/or required IoT devices and data sources.

For IT-1 the MM service has been implemented as a web service exposing an API to be called by the

JM and using the API exposed by the Aggregator service. At this implementation stage, the matching

process considers all application constraints and provides a basic topology based on a first-fit rule. In

future releases the selection of the best topology will be based on machine learning technology obtained

from historical executions and given some enhanced application description from the ICOS users.

The code has been implemented in Python and it is publicly accessible through

http://${MATCHMAKER_ADDRESS}. At this stage, the URL is http://147.83.159.195:24780.

3.3.3 Aggregator

In a multi-cluster architecture, the aggregator service provides knowledge of the static and dynamic

properties of a resource infrastructure associated with a particular ICOS ecosystem deployment in terms

of resource performance, resource availability, eco-efficiency characteristics and peripheral hardware

(USB ports, CPU/GPU, connected IoT devices such as cameras, sensors, actuators, etc.).

For IT-1, the aggregator component is a web service that exposes a web API that is called by the

matchmaking service. The API provides the infrastructure model or ICOS Infrastructure Taxonomy that

describes the characteristics of the ICOS infrastructure. The aggregator is implemented in Go and it is

accessible from the matchmaking service in http://${AGGREGATOR_ADDRESS}/api/v1.

The aggregator service queries Thanos (as the central point to which telemetry data is sent) to retrieve

stored metrics (more details can be found in the Logging and Telemetry subsection of this chapter). The

Figure 3-10 below shows a high-level architecture of the service.

about:blank
about:blank
http://lighthouse.icos-project.eu:8080/api/v3/controller

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 38 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 3-10 High-level architecture of the Aggregator service.

The Models component of the Aggregator architecture modifies the data structure received from Thanos

server according to the IT-1 ICOS Infrastructure Taxonomy model. This taxonomy is used to describe

and categorise the ICOS infrastructure that spans throughout the cloud, edge and IoT. Unlike traditional

cloud infrastructures, edge computing devices are located closer to the end user in a distributed

geographical location. However, these devices have certain weaknesses compared to the cloud, in terms

of compute, storage and connectivity capabilities. The ICOS taxonomy recognises the hierarchy of

continuous computing, its complexity and multiple characteristics, and allows large cloud infrastructures

and datacenters to be categorised as edge clusters and edge nodes to reflect the fact that application

execution can be organised at different levels.

The taxonomy used in this IT-1 can be found at the following URL located in the project source code

repository:

https://production.eng.it/gitlab/icos/meta-kernel/aggregator/-/blob/develop/Infra-taxonomy.md

3.3.4 Distributed & Parallel Execution

COMPSs/PyCOMPSs is a programming framework aiming at easing the development of general-

purpose applications targeting the Cloud-Edge-IoT Continuum. COMPSs is a task-based programming

model that orchestrates the execution of such tasks in a serverless manner on top of any distributed

platform. PyCOMPSs is an enhanced version of the programming model exploiting the benefits of the

Python programming language.

Service developers code their application logic following the COMPSs programming model. The

COMPSs runtime receives an external request to compute something coming either from a manual

petition by an end-user or automatically triggered as a response to a change on the data or the

infrastructure related to the service. These requests to execute code functions arrive at the COMPSs

runtime via HTTP requests.

Upon the reception of such a request, the runtime engine divides the application into several tasks,

detects the data dependencies among them, and orchestrates the execution of such tasks across all the

https://production.eng.it/gitlab/icos/meta-kernel/aggregator/-/blob/develop/Infra-taxonomy.md

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 39 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

resources within the infrastructure aiming to achieve a shorter execution time and an efficient usage of

the nodes belonging to the underlying infrastructure.

The following image depicts the architecture of the programming model runtime. Each node belonging

to the infrastructure runs a daemon process, known as Agent, that handles the different computation

requests that arrive through the Agent API.

Upon the reception of this request, the API submits to the Runtime engine a task that encapsulates the

execution of the main code of the computation. Such an engine is composed by four main components:

 Resource Manager: keeps track of the computing resources currently available (embedded on the

device or available as agents on remote nodes).

 Task Scheduler: picks the resources and time lapse to host the execution of each task while meeting

dependencies among them and guaranteeing the exclusivity of the assigned resources

 Data Manager: stores locally data values and establishes a data sharing mechanism across the whole

infrastructure leveraging on the Workload Offloader component.

 Executor Engine: handles the execution of tasks on the resources embedded on the local device (CPU,

GPU, FPGA or any other accelerator). If tasks are Java methods, they are executed within the same

progress. To execute Python tasks the runtime system raises several slave processes that host tasks

execution while the agent is up. The runtime system can also run other types of methods, such as

binaries or containers by launching new processes.

When the local computing devices execute a code programmed following the COMPSs/PyCOMPSs

programming model, new tasks are spawned and submitted back to the runtime engine so that the

runtime handles their execution in the same way as it was done for the main task.

When the Task Scheduler decides to execute a task (function) in the resource embedded on the local

device, the task is directly submitted to the Executor Engine. Otherwise, if it decides to offload a task

onto a remote node, the task is forwarded to the Workload Offloader component to submit the execution

through the most appropriate protocol.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 40 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.3.5 Workload Offloader

The runtime engine supporting the COMPSs programming model already includes a component that

handles the offloading of workload from one device in the Cloud-Edge-IoT continuum onto another

device. The current implementation of the engine supports the offloading – including the necessary

stage-in and stage-out data operations – of a function’s execution, either sequential or multi-threaded,

through SSH/SCP and through a proprietary protocol building on TCP sockets to another dedicated

worker process (not able to detect nested tasks).

The current engine also offers offloading mechanism through the COMPSs API which is publicly

offered as a REST service or it is also accessible through as a TCP-based proprietary protocol. Function

executions offloaded through the Agent API are able to detect nested tasks and distribute the workload

of that function across more devices in the Cloud-Edge-IoT Continuum.

3.4 Logging and Telemetry

The Logging and Telemetry architectural functionality is composed of two components:

 the Telemetry Controller that runs in the ICOS Controllers and is responsible for storing data and

provide interfaces to query and visualise it;

 the Telemetry Agent that runs in the infrastructure nodes and is responsible to collect data from the

system and the applications and to transmit it to the Telemetry Controller.

From a technological point of view, these two components heavily rely on third-party open-source

solutions for data collection and storage. Figure 3-11 shows the main technologies that will be used.

Figure 3-11 Composition of the technologies used for the implementation of the Logging and

Telemetry Layer.

The main reference for the design and implementation of the telemetry components in ICOS is the

OpenTelemetry project15. OpenTelemetry is a Cloud Native Computing Foundation (CNCF) project that

was born from the fusion of previous telemetry projects with the aim of unifying and standardising how

telemetry data (i.e., metrics, logs and traces) is modelled, collected and transferred in a vendor- and tool-

agnostic way. The ICOS telemetry components use the OpenTelemetry Collector16 which is a proxy

that can receive, process, and export telemetry data. It supports multiple receiving and sending formats

15 https://opentelemetry.io/
16 https://opentelemetry.io/docs/collector/

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 41 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

(for example, OTLP, Jaeger, Prometheus, as well as many commercial/proprietary tools). It also

supports processing and filtering telemetry data before it is exported. The support for multiple data and

backend formats has been the main reason for choosing this technology, since it allows ICOS to be very

flexible in the choice of other technologies to generate, manage and consume telemetry data. The

OpenTelemetry Collector is at the core of the Telemetry Agent and is used to collect data from metrics

endpoints as well as other Telemetry Agents, to process the data (i.e., aggregation, filtering and

labelling) and to send the data to the Telemetry Controller.

The Telemetry Agent also support Prometheus17 to store metrics locally (for caching or analysis

reasons) and to collect metrics from Prometheus servers. The latter case can be useful (although not

required) in deployment scenarios where metrics are already collected using Prometheus. In this case

ICOS can obtain metrics from Prometheus directly without collecting them again.

For the long-term storage of telemetry data in the Controller, three main technologies have been selected:

 Thanos18 for storing metrics. It is based on and fully compatible with Prometheus and offers

interesting features like unlimited retention of metrics and compaction of historical data;

 Loki19 for storing logs. It has been chosen for its compatibility with the other tools and its ease of

usage;

 Jaeger20 for storing traces (although it will not be used and deployed in the scope of IT-1).

Finally, Grafana21 is used for visualising the data from long-term storage. All the tools selected are

open-source and provide functionalities at the state of the art. In addition, they are very popular and with

a good support from the respective communities.

3.4.1 Metrics Collected

The Telemetry Agent collects metrics from multiple sources specialised to monitor different aspects of

the system. These sources are implemented from different components (third-party and developed by

ICOS) that are deployed and configured by the telemetry agents. In the following subsections, the

different types of metrics that were collected and the components used to generate them are presented.

3.4.1.1 Topology metrics

The Aggregator component uses the telemetry data to keep an updated structure and status of the

infrastructures connected to an ICOS Controller. The main components, at node site, that generates

metrics used for this purpose are the following:

 Kube State Metrics and OpenTelemetry’s Kubernetes Receiver for Kubernetes clusters;

 The Node Feature Discovery Plugin which is a Kubernetes add-on for detecting hardware features

and system configuration by providing custom labels for detected devices attached to edge nodes

controlled by OCM. The plugin allows for integration with Prometheus and other telemetry

frameworks;

 The Telemetry Agent itself adds metadata about the topology of the infrastructures (e.g., node IDs,

cluster names);

 Metrics for the device discovery processes on the node are exported in the telemetry data. The

information about peripheral devices attached to the Edge node, in the Nuvla case, is contained in the

Nuvla Orchestrator and will be exported in a future iteration.

17 https://prometheus.io/
18 https://thanos.io/
19 https://grafana.com/oss/loki/
20 https://www.jaegertracing.io/
21 https://grafana.com/

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 42 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.4.1.2 Resource Usage Metrics

Metrics on the usage of resources and performance of the system and the application running in the

nodes are essential to ICOS to understand the behaviour of the system and optimise it. While in IT-1

these metrics are not consumed by any component, in IT-2 they will be used by the Dynamic Policy

Manager to evaluate performance policies (and trigger remediation actions). The main components

deployed in the Telemetry Agent that will collect this type of metrics are:

 The Prometheus’ Node Exporter that monitor the node and provides detailed data about resources

usage (i.e., cpu, memory, disk, network, processes);

 The cAdvisor tool that provides resource usages for each container running in a node (both for

Kubernetes and Docker nodes);

3.4.1.3 Eco Efficiency Metrics

As part of Telemetry capabilities, Scaphandre was employed to allow energy consumption monitoring

across multiple ICOS nodes. Scaphandre comprises an open-source project designed for monitoring and

optimising the consumption of resources in Kubernetes clusters. It provides insights and collections of

metrics related to resource utilisation, thus facilitating the management and the optimisation of the

infrastructure.

Key features and capabilities of Scaphandre for resource consumption monitoring in a Kubernetes

environment may include:

 Resource Metrics: Scaphandre collects and provides detailed metrics on CPU, memory, and other

resource usage across nodes, pods, and containers within a Kubernetes cluster.

 Real-time Monitoring: It offers real-time monitoring and reporting capabilities, allowing parties

directly concerned to stay informed about the current state of resource consumption.

 Historical Data: Scaphandre often retains historical data, enabling trend analysis and the

identification of resource usage patterns over time.

 Alerting: It may include alerting mechanisms to notify administrators when resource consumption

exceeds predefined thresholds, helping prevent performance issues or outages.

 Efficiency Recommendations: Some implementations of Scaphandre may offer recommendations

for optimising resource allocation, which can help reduce costs and improve cluster efficiency.

 Integration: It can integrate with other monitoring and observability tools, making it easier to

incorporate Kubernetes resource consumption data into existing infrastructure management

workflows.

In summary, Scaphandre is a tool that assists Kubernetes users in gaining better visibility into how their

clusters are using resources, making it easier to allocate resources effectively, troubleshoot performance

issues, and optimise infrastructure costs.

When combined with Prometheus and Grafana, Scaphandre provides a powerful solution for real-time

cluster observability, performance optimization, and cost reduction. By developing the triplet of

Prometheus, Grafana and Scaphandre, the following interaction loop was enabled: first, Scaphandre

records the energy values consumed by an application-specific pod and, then, Prometheus is able to

grasp data from Scaphandre's endpoints (via Prometheus node exporters). The collected energy

consumption values are stored in a time-series database, making it readily accessible for querying and

analysis. Finally, Grafana was used as a data visualisation and alerting tool, so as to complement

Prometheus functionalities. The goal of Grafana was to offer a rich and customizable interface for

visualising data and creating dashboards. In later stages, Grafana can be also used for alerting purposes,

thus enabling timely notifications of resource consumption anomalies or predefined thresholds.

The above-mentioned setup was implemented at NKUA mini-lab premises, which are composed of 3

servers (2 servers act as ICOS nodes/agents and 1 act as ICOS controller). The Figure 3-12 depicts the

developed stack of Scaphandre, Prometheus, and Grafana, as implemented at the NKUA lab. Evidently,

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 43 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

to ensure accurate data collection, Scaphandre and Prometheus node exporters have been deployed at

all servers, whereas Prometheus Server has been deployed only on ICOS node 1 to gather the metrics

from the Prometheus Node Exporters and serve them at Grafana.

Figure 3-12 Developed stack of Scaphandre, Prometheus, and Grafana, as implemented at the NKUA

lab.

The Figure 3-13 shows an example of the recorded energy consumption curve, with the consumption

values being gathered via Scaphandre/Prometheus and visualised by Grafana. Overall, by integrating

Scaphandre, Prometheus, and Grafana, some key monitoring abilities can be identified as:

 Real-time Visibility: Kubernetes operators gain real-time visibility into resource consumption,

proactively addressing performance bottlenecks and optimising resource allocation.

 Historical Data Analysis: The combination of Prometheus's time-series database (InfluxDB will also

be used) and Grafana's visualisation capabilities allows for historical data analysis, aiding in the

identification of resource consumption patterns and trends (DeCOFFEE input).

 Efficient Resource Management: By continuously monitoring resource consumption, informed

decisions can be made to optimise resource allocation, reducing infrastructure costs and minimising

resource wastage.

 Scalability: This monitoring stack is highly scalable, making it suitable for monitoring both small-

scale and large-scale Kubernetes clusters.

 Customised Dashboards: Grafana's flexibility enables the creation of customised dashboards

tailored to specific use cases or requirements, ensuring that relevant metrics are easily accessible, like

the image below:

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 44 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 3-13 Recorded energy consumption curve of a node.

In addition to utilising Grafana's graphical user interface (UI) for accessing metrics, an alternative

approach involves querying the Prometheus Server endpoint, which is exposed for data retrieval. These

queries necessitate specific parameters, including the name of the Scaphandre metric, the start and end

times for monitoring, expressed in absolute Unix epoch time (i.e., seconds since January 1, 1970), and

the temporal step size for data points, also specified in seconds. Depending on the metric in question,

additional parameters may be either mandatory or optional.

To illustrate this process, an experimental investigation was conducted at the NKUA mini-lab. This

investigation aimed to monitor the power consumption associated with a model training operation. The

model training operation was containerized and subsequently deployed within NKUA's Kubernetes

cluster. Subsequently, queries were made to the Prometheus Server, which was exposed at the following

URL: http://192.168.1.33:30091/. These queries were defined with specific query parameters, as

illustrated in the forthcoming figures (referred to as Figure 3-14 below).

Figure 3-14 Query parameters to request 'scaph_process_power_consumption_microwatts' metric for

specific pods.

Specifically, the objective was to retrieve the 'scaph_process_power_consumption_microwatts' metric

pertaining to the particular pod that hosted the model training operation. As part of the query parameters,

it was essential to specify the commencement and conclusion times for data collection, as well as the

time intervals between successive data points, all in seconds. Additionally, the 'kubernetes_pod_name,'

which uniquely identified the relevant Pod within our application, had to be provided as a query

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 45 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

parameter. The response received from this query was presented in JSON format and is visualised in

Figure 3-15.

Figure 3-15 JSON response with 'scaph_process_power_consumption_microwatts' metric.

System and Application performance Metrics

The Telemetry Agent implements a mechanism to automatically discover system services and user

applications running in the node that expose metrics and collect those metrics on a regular basis. This

generic mechanism allows an easy integration of the ICOS Telemetry system with any source of metric.

Metrics collected in this way can be used, in the same way as system metrics, to define performance

policies and constraints that will influence the behaviour of ICOS. In IT-1, the discovery mechanism is

delivered and in IT-2 it will be exploited by system and user services.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 46 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

4 Development and Validation

4.1 Development and Integration Processes and Tools

The development and integration strategy and tools adopted to realise the ICOS platform, is provided in

the deliverable “D2.2 ICOS Architecture and Design (IT-1)”and in accordance with the scope of the IT-

1.

The Table 2 below is an updating of the initial mapping of the architectural components provided in the

deliverable “D2.2 – Architectural and Design (IT-1)” (p75 , Table 8: Initial mapping of all architectural

components).

The table provides only components that will be implemented for the ICOS Alfa release at M15

(November 2023) with their respective owner, the list of (possible) sub-components for each component

and the partners responsible for the implementation and list of technologies (if necessary) adopted to

support module development.

Figure 4-1 Snapshot of the ICOS System Release schedule around IT-1 (source D2.2).

For the first release of the ICOS not all functionalities were implemented for the Meta-Kernel

component but only a subset of them and related to the components implemented (and shown in the

Table 2):

 Node On-Boarding

 Application Descriptor Definition

 Basic Application Deployment

 Collect and visualise Metrics and Logs

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 47 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Table 2 ICOS Meta-Kernel components, responsible partner, and selected technology.

Component (Owner) Sub-Component
Responsible

Partners
Technology/Assets mapping

LightHouse

(TUBS)
 TUBS

Lighthouse; HTTP server in

Golang

Continuum

Manager (SixSq)

Resource and

Clustering Manager

SixSq Nuvla https://nuvla.io/

ATOS OCM

Runtime Manager

(BSC)

Aggregator ATOS HTTP server in Golang

Matchmaking UPC FastAPI

Job Manager ATOS HTTP server in Golang

Distributed and

Parallel execution
BSC COMPS

Workload offloader BSC COMPS

Logging and

Telemetry (ENG)
Telemetry Agent

OpenTelemetry, Thanos,

Jaeger, Loki, Grafana

The tools used for the Continuous Integration and Continuous Delivery is GitLab provided from

Engingennering (ENG): ICOS / Support · GitLab (eng.it).

In GitLab a dedicated project called MetaKernel (https://production.eng.it/gitlab/icos/meta-kernel) is

created. It consists of a set of sub-projects (shown in Figure 4-2): the ICOS Metakernel ICOS

components.

Figure 4-2 ICOS Project source code repository using GitLab.

The developers upload their code every time a new implementation of their components is realised.

https://nuvla.io/
https://production.eng.it/gitlab/icos/support
https://production.eng.it/gitlab/icos/meta-kernel

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 48 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

More details about the use of GitLab will be provided in the deliverable “D5.1 First ICOS Release:

ICOS Alfa version”.

For the integration of these tools it has been decided to use Docker for the containerization and

Kubernetes for the clustering as runtime platforms to run the ICOS MetaKernel module, because the

technologies used to implement this module adopt docker and Kubernetes as baseline technologies.

For the Beta Release two additional tools (SonarQube,

https://www.sonarsource.com/products/sonarqube and Harbor, https://goharbor.io/) will be activated

for the protection of artefacts, bug detection, vulnerabilities and quality of the code.

4.2 Validation

The following Test Cases were designed for the validation of the functional capabilities of the ICOS

Meta-Kernel layer, in order to support the implementation of the System Use Cases (that are part of the

ICOS Alfa Release) with the scope of IT-1 delivery. The Test Cases defined below are of multiple types

- some are validating components in isolation however, some are defined on a system and integration

levels.

4.2.1 Node On-Boarding

The following validation Test Cases demonstrate the edge and cloud resources onboarding capabilities

of the selected Cloud and Edge Orchestrators (continuum.orchestrator-edge-cloud) OCM and Nuvla.

Test Case - Onboard edge resource in Nuvla

Prerequisites:

 Edge: device with Kubernetes COE (e.g. k3s) installed; edge operator with (remote) access to the

console of the edge devices.

 Nuvla: edge operator with account in https://nuvla.io

Expected result:

 Edge device visible on https://nuvla.io as commissioned and in online state.

Test Record – [PASSED]

 Operator logs in to Nuvla.io Platform https://nuvla.io and navigates to Edge tab.

https://www.sonarsource.com/products/sonarqube/
https://goharbor.io/
https://nuvla.io/
https://nuvla.io/
https://nuvla.io/

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 49 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 Operator creates the Kubernetes COE based Edge device reference in Nuvla.io platform

 Operator is presented with Helm command to provision the NuvlaEdge on the Edge device

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 50 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 After NuvlaEdge is deployed on the Edge device, it connects to Nuvla.io and commissions itself into

an operational state.

Test Case - Onboard edge or cloud resource in OCM

Prerequisites:

 Edge/Cloud: device with Kubernetes COE (e.g., k3s) installed; edge operator with (remote) access to

the console of the edge devices.

 OCM: operator with account in OCM

Expected result:

 Cluster visible in OCM as commissioned and in online state.

 Clusteradm tool installed within the Edge and the ICOS Controller.

Test Record – [PASSED]

 Operator logs into the Edge and triggers the on-boarding process by executing Join request:

clusteradm join \

 --hub-token <your token data> \

 --hub-apiserver <your hub cluster endpoint> \

 --wait \

 --cluster-name "cluster1" \ # Or other arbitrary unique name

 --context ${CTX_MANAGED_CLUSTER}

Once the request is accepted by the ICOS Controller the Resource will appear as follows:

For more information: https://open-cluster-management.io/getting-started/installation/register-a-

cluster/#bootstrap-a-klusterlet

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 51 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Test Case - Onboard cloud Kubernetes COE resource in Nuvla

Prerequisites:

 Cloud: VM with Kubernetes COE cluster installed; cloud operator with (remote) access to the console

of the VM with Kubernetes master node.

 Nuvla: cloud operator with account in https://nuvla.io

Expected result:

 Kubernetes COE cluster is visible in https://nuvla.io in online state.

Test Record – [PASSED]

 Operator logs in to Nuvla.io Platform https://nuvla.io and navigates to Cloud tab.

• Operator clicks on +Add button and selects Kubernetes in the presented modal window

https://nuvla.io/
https://nuvla.io/
https://nuvla.io/

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 52 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 Operator provides name, description and the endpoint of the Kubernetes cluster. Then, clicks green

create button.

 Operator is presented with the new cluster reference on the Cloud tab.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 53 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 Operator can get detailed information about the created Kubernetes cluster.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 54 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

4.2.2 Application Descriptor Definition and Basic Application Deployment

Deployment of synthetic applications with specific resource requirements on Cloud and Edge resources.

Application Descriptor Definition will be part of each application deployment, hence, is part of the

Application Deployment validations.

Test Case - App deployment at the edge with Open-Cluster-Management Application Descriptor.

Prerequisites:

 ICOS Controller: the ICOS Controller endpoint is available, Cloud and Edge resources are present

and available.

 User Application: simple Hello World application where the only requirement is it must be deployed

to an Edge resource.

Expected result:

 The Application is deployed to an available Edge resource manager by Open-Cluster-Management

Orchestrator.

Test Record - [PASSED]

 Create a Deployment Job: POST /jobmanager/jobs/create

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 55 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 The created Job:

{

 "ID": "5f9bff8c-f334-46d7-9780-47b40a7c96bd",

 "type": 5,

 "state": 1,

 "manifest": "apiVersion: apps/v1\r\nkind: Deployment\r\nmetadata:\r\n name: hello-cloud\r\n labels:\r\n

app: hello-cloud\r\nspec:\r\n replicas: 1\r\n selector:\r\n matchLabels:\r\n app: hello-cloud\r\n

template:\r\n metadata:\r\n name: hello-cloud\r\n labels:\r\n app: hello-cloud\r\n spec:\r\n

containers:\r\n - name: hello-cloud-one\r\n image: busybox\r\n command: [\"sleep\"]\r\n

args: [\"100\"]\r\n resources:\r\n requests:\r\n cpu: 1\r\n memory: 3Gi\r\n -

name: hello-cloud-two\r\n image: busybox\r\n command: [\"sleep\"]\r\n args: [\"100\"]\r\n

resources:\r\n requests:\r\n cpu: 2\r\n memory: 3Gi",

 "targets": [

 {

 "id": 4,

 "JobID": "5f9bff8c-f334-46d7-9780-47b40a7c96bd",

 "cluster_name": "10.42.0.85:8080",

 "node_name": "k3s-worker1"

 }

],

 "locker": false,

 "updatedAt": "2023-10-17T08:50:06.846Z"

}

Note: it should be noticed that the targets are properly populated by the matchmaking service

during the deployment job creation.

 runtime.deployment-manager [ATOS] works in pull mode to retrieve the previously created job from

the runtime.job-manager [ATOS]. Once the job is pulled and validated it can be executed by Open

Cluster Management Orchestrator as “ManifestWork”.

 Since Open Cluster Management Agent within the Edge Node also works in pull mode, it is able to

notice mentioned ManifestWork and apply it properly on the local cluster.

 As a result, the application is deployed within the Edge cluster called “10.42.0.85:8080” and node

“k3s-worker1”. The following chart shows the availability of the deployment:

<ManifestWork>

└── <hello-world>

│ ├── <Applied> True

│ ├── <Resources>

│ │ ├── <deployments>

│ │ └── <default/hello-world> applied

│ ├── <Available> True

│ ├── <Cluster> k3s-worker1

│ ├── <Number of Manifests> 1

Test Case - App deployment degenerate case

Prerequisites:

 ICOS Controller: the ICOS Controller endpoint is available but doesn’t have any Edge or Cloud

resources available.

 User Application: simple Hello World application without any requirements.

Expected result:

 ICOS Controller is not able to deploy the application since no target is found and after some time sets

the state of the Job as Degraded(4).

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 56 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Test Record - [PASSED]

 Create a Deployment Job: POST /jobmanager/jobs/create

 The created Job:

{

 "ID": "5f9bff8c-f334-46d7-9780-47b40a7c96bd",

 "type": 5,

 "state": 1,

 "manifest": "apiVersion: apps/v1\r\nkind: Deployment\r\nmetadata:\r\n name: hello-cloud\r\n labels:\r\n app: hello-

cloud\r\nspec:\r\n replicas: 1\r\n selector:\r\n matchLabels:\r\n app: hello-cloud\r\n template:\r\n metadata:\r\n

name: hello-cloud\r\n labels:\r\n app: hello-cloud\r\n spec:\r\n containers:\r\n - name: hello-cloud-one\r\n

image: busybox\r\n command: [\"sleep\"]\r\n args: [\"100\"]\r\n resources:\r\n requests:\r\n

cpu: 1\r\n memory: 3Gi\r\n - name: hello-cloud-two\r\n image: busybox\r\n command: [\"sleep\"

]\r\n args: [\"100\"]\r\n resources:\r\n requests:\r\n cpu: 2\r\n memory: 3Gi",

 "targets": [],

 "locker": false,

 "updatedAt": "2023-10-17T08:50:06.846Z"

}

Since no targets are returned by the Match making service, the state is updated to state=Degraded (4):

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 57 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

{

 "ID": "5f9bff8c-f334-46d7-9780-47b40a7c96bd",

 "type": 5,

 "state": 4,

 "manifest": "apiVersion: apps/v1\r\nkind: Deployment\r\nmetadata:\r\n name: hello-cloud\r\n labels:\r\n app: hello-

cloud\r\nspec:\r\n replicas: 1\r\n selector:\r\n matchLabels:\r\n app: hello-cloud\r\n template:\r\n metadata:\r\n

name: hello-cloud\r\n labels:\r\n app: hello-cloud\r\n spec:\r\n containers:\r\n - name: hello-cloud-one\r\n

image: busybox\r\n command: [\"sleep\"]\r\n args: [\"100\"]\r\n resources:\r\n requests:\r\n

cpu: 1\r\n memory: 3Gi\r\n - name: hello-cloud-two\r\n image: busybox\r\n command: [\"sleep\"

]\r\n args: [\"100\"]\r\n resources:\r\n requests:\r\n cpu: 2\r\n memory: 3Gi",

 "targets": [],

 "locker": false,

 "updatedAt": "2023-10-17T08:50:06.846Z"

}

4.2.3 Distributed and Parallel Execution

The following test case validates the distributed execution of an application (means model training)

using the ICOS’ Distributed and Parallel execution manager. Besides this test, the component undergoes

more than 250 unit tests that validate the proper running of specific functionalities of the component.

Test Case - Execution of a Kmeans training using a input distributed dataset

Prerequisites:

 Kubernetes cluster where to deploy a service

 Kmeans application published: docker image containing the Distributed and Parallel execution

component and the user application (Kmeans)

Expected result:

 The service is able to detect the tasks composing the nested workflow of the required processing.

 Tasks are being submitted to the multiple containers belonging to the deployment

Test Record - [PASSED]

 Deploy the service containers

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 58 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 Check initial log in the master

 Launch application

 Check final log in the master and verify the Job completion

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 59 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 Verify task executed in each container

4.2.4 Collect and visualise Metrics and Logs

The Test Cases for this System Use Case are revolving around the two following topics:

 Metrics and logs from monitored resources and applications can be visualised.

 Metrics and logs from monitored resources and applications are collected.

The test cases are executed on Kubernetes clusters. 3 nodes are tested : Nuvla k8s cluster, node-edge

cluster and node-cloud cluster.

For each 3 nodes the metrics are collected from the OpenTelemetry Collector (ICOS Agent Collector)

and sent to Thanos (ICOS Controller); the metrics are visualised from Grafana.

Test Case - Metrics and logs from monitored resources and applications can be visualised

Prerequisites:

 ICOS Controller and ICOS Agent up and running

 ICOS Controller deploys the default datasource Thanos for the resources and application

Expected result:

 All metrics are visualised in the Grafana dashboards.

Test Record - [PASSED]

1. All metrics are visualised in the Grafana dashboards : https://10.160.3.177:32100/explore and

the default datasource in the Grafana Explorer is Thanos , as shown in this following picture:

https://10.160.3.177:32100/

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 60 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Test Case - Serve infrastructure information from monitoring aggregator

Prerequisites:

 Monitoring servers: telemetry collected from ICOS nodes is stored in a time-series database with up

to date data.

 Aggregator: service up and running with connectivity to the monitoring server.

Expected result:

 Aggregator serves infrastructure static and dynamic data with the infrastructure data model.

Test Record - [PASSED]

A representation of how the results of the collection of the metrics are illustrated for the 3 nodes

deployed (Nuvla, nod-edge and node-cloud) is provided in the following figure:

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 61 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Test Case - Metrics from monitored resources and applications are collected

Prerequisites:

 Nuvla agent, edge-node and one cloud agent are deployed in ICOS Agent (a kubernetes cluster)

 ICOS Controller receive the metrics from the OTLP

Expected result:

 The metrics are collected, exposed, and can be accessed on an endpoint.

Test Record - [PASSED]

 The metrics exposed and running can be seen at: 10.160.3.177:32101/metrics

 The default datasource Thanos is provided at the following link: http://10.160.3.177:32105/stores.

http://10.160.3.177:32101/metrics
http://10.160.3.177:32105/stores

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 62 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 63 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

5 Results and next steps

The ICOS project successfully concluded the initial development and integration of the ICOS Meta-

Kernel Layer Module for IT-1 delivery. The IT-1 delivery was primarily used to validate the main

architectural and design ideas the project delivered in D2.1 and D2.2 and was working on up this point.

Implementation and validation results

 Set up the development and integration platform with CI/CD tools.

 Set up testbed for validating the results of the Meta-Kernel development and integration activities.

 Provided initial implementation and integration of the discovery service – Lighthouse.

 ICOS Controller can be registered with ICOS discovery service Lighthouse.

 Designed the Application Description and Application Deployment Models used by user and by the

Meta-Kernel internally in the process of the application deployment.

 Provided initial implementation of the ICOS Shell for the users to authenticate with ICOS and interact

with the ICOS Controller.

 User can use ICOS Shell to submit the application deployment request to ICOS Shell Backend.

 Deployment works for OCM via ICOS Job Manager using a simple Matchmaking mechanism.

 Telemetry is collected by Prometheus Node Exporters and pushed to Thanos for storage and topology

reconciliation.

Below we list immediate next steps that the project will be working on for ICOS Alfa Release

 Improving topology collection and representation by including IoT peripherals.

 Improving the request/response schemas of documents used in the cross-component communications

of the Meta-Kernel Layer.

 Extend integration of Cloud and Edge Orchestrator to Nuvla.io Platform by completing the

development of the Nuvla.io specific Deployment Manager connector.

 Implement first elements of the security and authentication/authorization across all the components

of the Meta-Kernel with the aim of extending the authorization policies down to the elements of the

Cloud-Edge-IoT continuum (e.g., down to the user accounts on the Edge COE clusters) that will

already follow in ICOS Betta Release.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 64 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

6 Annexes

6.1 RESTful API resource schemas and examples

This section provides the schemas and examples (if applicable) of the RESTful API interfaces of the

design components defined in section 2.2.

6.1.1 user.shell-backend-i

GET /deployment/{deploymentId} resource data model

Attribute Name Type Description

id Long Unique identifier of the deployment

name String [optional] Name of the deployment

status String [optional] Status of the deployment

/resource/{resourceId} resource data model

Attribute Name Type Description

id Long Unique identifier of the resource

name String [optional] Name of the resource

type String Type of resource

parentId Long ID of the parent resource

status String Status of the resource

6.1.2 runtime.job-manager-i

GET /deployment/job resource data model

Attribute Name Type Description

ID UUID Unique identifier of the Job

UUID UUID Mapped Unique Identifier of the Deployment

executed by OCM

Type DataType Name of the deployment

State DataType Status of the deployment

Manifest String Application Description

Targets Target[] Target Nodes

Locker Bool True if the Job is locked, False if the job is

unlocked

UpdatedAt DateTime The timestamp when the Job was last time updated

(write operation was done)

 GET /deployment/jobs/{deploymentId} returns a Job following the job resource schema.

 GET /deployment/jobs/ returns a list of Jobs following the job resource schema.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 65 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 POST /jobmanager/jobs/create returns the created Job following the job resource schema.

 PUT /deployment/jobs/{deploymentId} retrieves the updated job following the job resource schema.

Target model

Attribute Name Type Description

ID uint32 Unique identifier of the Target Cluster/Node

cluster_name String The name of the cluster returned by matchmaking

service

node_name String The name of the node returned by matchmaking

service

The GET /deployment/jobs/{deploymentId} will retrieve the Job model as follows:

 {

 "ID": "51abf632-6f1c-4c23-88aa-692a084d7ace",

 "uuid": "00000000-0000-0000-0000-000000000000",

 "type": 5,

 "state": 1,

 "manifest": "apiVersion: apps/v1\r\nkind: Deployment\r\nmetadata:\r\n name: hello-cloud\r\n labels:\r\n app: hello-

cloud\r\nspec:\r\n replicas: 1\r\n selector:\r\n matchLabels:\r\n app: hello-cloud\r\n template:\r\n metadata:\r\n

name: hello-cloud\r\n labels:\r\n app: hello-cloud\r\n spec:\r\n containers:\r\n - name: hello-cloud-one\r\n

image: busybox\r\n command: [\"sleep\"]\r\n args: [\"100\"]\r\n resources:\r\n requests:\r\n

cpu: 1\r\n memory: 3Gi\r\n - name: hello-cloud-two\r\n image: busybox\r\n command: [\"sleep\"

]\r\n args: [\"100\"]\r\n resources:\r\n requests:\r\n cpu: 2\r\n memory: 3Gi",

 "targets": [

 {

 "id": 2,

 "JobID": "51abf632-6f1c-4c23-88aa-692a084d7ace",

 "cluster_name": "k3s-worker1",

 "node_name": "k3s-worker1"

 }

],

 "locker": false,

 "updatedAt": "2023-10-17T07:59:52.494Z"

}

The POST /jobmanager/jobs/create responds with the created Job, plus the information retrieved from

the matchmaking service:

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 66 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 {

 "ID": "51abf632-6f1c-4c23-88aa-692a084d7ace",

 "uuid": "00000000-0000-0000-0000-000000000000",

 "type": 5,

 "state": 1,

 "manifest": "apiVersion: apps/v1\r\nkind: Deployment\r\nmetadata:\r\n name: hello-cloud\r\n labels:\r\n app: hello-

cloud\r\nspec:\r\n replicas: 1\r\n selector:\r\n matchLabels:\r\n app: hello-cloud\r\n template:\r\n metadata:\r\n

name: hello-cloud\r\n labels:\r\n app: hello-cloud\r\n spec:\r\n containers:\r\n - name: hello-cloud-one\r\n

image: busybox\r\n command: [\"sleep\"]\r\n args: [\"100\"]\r\n resources:\r\n requests:\r\n

cpu: 1\r\n memory: 3Gi\r\n - name: hello-cloud-two\r\n image: busybox\r\n command: [\"sleep\"

]\r\n args: [\"100\"]\r\n resources:\r\n requests:\r\n cpu: 2\r\n memory: 3Gi",

 "targets": [

 {

 "id": 2,

 "JobID": "51abf632-6f1c-4c23-88aa-692a084d7ace",

 "cluster_name": "k3s-worker1",

 "node_name": "k3s-worker1"

 }

],

 "locker": false,

 "updatedAt": "2023-10-17T07:59:52.494Z"

}

The PUT /deployment/jobs/{deploymentId} will respond with the updated Job as follows:

{

 "ID": "51abf632-6f1c-4c23-88aa-692a084d7ace",

 "uuid": "00000000-0000-0000-0000-000000000000",

 "type": 5,

 "state": 2,

 "manifest": "apiVersion: apps/v1\r\nkind: Deployment\r\nmetadata:\r\n name: hello-cloud\r\n labels:\r\n app: hello-

cloud\r\nspec:\r\n replicas: 1\r\n selector:\r\n matchLabels:\r\n app: hello-cloud\r\n template:\r\n metadata:\r\n

name: hello-cloud\r\n labels:\r\n app: hello-cloud\r\n spec:\r\n containers:\r\n - name: hello-cloud-one\r\n

image: busybox\r\n command: [\"sleep\"]\r\n args: [\"100\"]\r\n resources:\r\n requests:\r\n

cpu: 1\r\n memory: 3Gi\r\n - name: hello-cloud-two\r\n image: busybox\r\n command: [\"sleep\"

]\r\n args: [\"100\"]\r\n resources:\r\n requests:\r\n cpu: 2\r\n memory: 3Gi",

 "targets": [

 {

 "id": 2,

 "JobID": "51abf632-6f1c-4c23-88aa-692a084d7ace",

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 67 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "cluster_name": "k3s-worker1",

 "node_name": "k3s-worker1"

 }

],

 "locker": false,

 "updatedAt": "2023-10-17T08:50:23.433Z"

}

JobType DataType Enum: CreateDeployment, GetDeployment and DeleteDeployment.

State DataType Enum: Created, Progressing, Available and Degraded.

6.1.3 runtime.matchmaker-i

POST /matchmake request data model

Attribute Name Type Description

apiVersion String The API version of the Kubernetes object

(Deployment).

Kind String The type or kind of the Kubernetes object

(Deployment).

metadata Object Contains metadata information about the deployment.

metadata.name String The name of the deployment ("hello-cloud").

metadata.labels Object Labels associated with the deployment.

metadata.labels.app String Label specifying the application as "hello-cloud".

Spec Object Describes the desired state for the deployment.

spec.replicas Integer The desired number of replicas for the deployment.

spec.selector Object Defines how the deployment selects which pods to

manage.

spec.selector.matchLabels Object Specifies the labels used for pod selection.

spec.template Object Describes the pod that will be created by this

deployment.

spec.template.metadata Object Metadata for the pod template.

spec.template.metadata.name String The name of the pod template ("hello-cloud").

spec.template.metadata.labels Object Labels associated with the pod template.

spec.template.metadata.labels.app String Label specifying the application as "hello-cloud".

spec.template.spec Object Specification for the pod template.

spec.template.spec.containers Array of

Objects

Defines the containers within the pod.

spec.template.spec.containers.name String The name of the container ("hello-cloud-one" or

"hello-cloud-two").

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 68 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Attribute Name Type Description

spec.template.spec.containers.image String The Docker image used for the container ("busybox").

spec.template.spec.containers.com

mand

Array of

Strings

The command to be executed by the container

(["sleep"]).

spec.template.spec.containers.args

Array of

Strings

The arguments passed to the container (["100"]).

spec.template.spec.containers.resou

rces

Object Resource requirements for the container.

spec.template.spec.containers.resou

rces.requests.cpu

Integer CPU request for the container (1 or 2).

spec.template.spec.containers.resou

rces.requests.memory

String Memory request for the container ("3Gi").

Following is an example of the expected input passed as JSON:

{

 "apiVersion": "apps/v1",

 "kind": "Deployment",

 "metadata": {

 "name": "hello-cloud",

 "labels": {

 "app": "hello-cloud"

 }

 },

 "spec": {

 "replicas": 1,

 "selector": {

 "matchLabels": {

 "app": "hello-cloud"

 }

 },

 "template": {

 "metadata": {

 "name": "hello-cloud",

 "labels": {

 "app": "hello-cloud"

 }

 },

 "spec": {

 "containers": [

 {

 "name": "hello-cloud-one",

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 69 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "image": "busybox",

 "command": ["sleep"],

 "args": ["100"],

 "resources": {

 "requests": {

 "cpu": 1,

 "memory": "3Gi"

 }

 }

 },

 {

 "name": "hello-cloud-two",

 "image": "busybox",

 "command": ["sleep"],

 "args": ["100"],

 "resources": {

 "requests": {

 "cpu": 2,

 "memory": "3Gi"

 }

 }

 }

]

 }

 }

 }

 }

POST /matchmake response data model

Attribute Name Type Description

Same attributes as in the entry, with the addition of the following information

spec.template.spec.targets Target[] List of targets associated with

the deployment.

Target

Name Type Mandatory Description

cluster_name String true The name of the cluster associated with the target.

node_name String true The name of the node associated with the target.

The POST will respond with the same data sent, plus add the cluster and node selected for the application

execution.

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 70 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "targets": [

 {

 "cluster_name": "10.42.0.85:8080",

 "node_name": "k3s-worker1"

 }

]

6.1.4 runtime.execution-manager-i

ExternalAdaptorResource

Name Type Mandatory Description

name String true Name of the node

description ResourceDescription true Features of the node

adaptor String true Offloader’s plugin used to communicate

with the node

projectConf Property[] false Description of how to setup the resource

resourcesConf Property[] false Description of how to access the resource

Property

Name Type Mandatory Description

Name String true Name of the property

Value String true Value for that property

ResourceDescription

Name Type Mandatory Description

processors ProcessorDescription[] false Embedded processors

memory_size float false Available memory (GB)

memory_type String false Memory technology

storage_size float false Available disk (GB)

storage_type String false Storage technology

storage_bandwith float false Disk bandwidth (Mbps)

ProcessorDescription

Name Type Mandatory Description

name String true Processor Name

units int true number of cores

architecture String false Instruction set

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 71 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Application

Name Type Mandatory Description

lang String

[JAVA|PYTHON]

true Implementing language of the function

className String true Class or Module containing the function

methodName String true Name of the method to execute

ceiClass String false If Java, selection of methods to become

nested tasks upon invocation

Parameters Parameter[] true Description of the parameters to pass in to

the method invocation

Target Parameter false Description of the object onto which invoke

the method

Results Parameter[] false Description of the values generated by the

invocation

Parameter

Name Type Mandatory Description

paramId int true Position of the parameter in the invocation

paramName String false Name of the parameter in the function

type DataType true Format of the data being passed in

direction String [IN, OUT,

INOUT]

true Directionality of the parameter

prefix String false Name of the method to execute

stdIOStream String [STDIN,

STDOUT, STDERR,

USPECIFIED]

false IO stream that should be linked to the value

of this parameter

contentType Type of data contained false If collective type, what kind of data is

enclosed in the collection

weight float false importance of the parameter at scheduling

stage

value Object false Value of the parameter

DataType Enum:
BOOLEAN_T, CHAR_T, BYTE_T, SHORT_T, INT_T, LONG_T, FLOAT_T, DOUBLE_T, STRING_T,

STRING_64_T, FILE_T, OBJECT_T, PSCO_T, EXTERNAL_PSCO_T, BINDING_OBJECT_T, WCHAR_T,

WSTRING_T, LONGLONG_T, VOID_T, ANY_T, ARRAY_CHAR_T, ARRAY_BYTE_T,

ARRAY_SHORT_T, ARRAY_INT_T, ARRAY_LONG_T, ARRAY_FLOAT_T, ARRAY_DOUBLE_T,

COLLECTION_T, DICT_COLLECTION_T, STREAM_T, EXTERNAL_STREAM_T, ENUM_T, NULL_T,

DIRECTORY_T;

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 72 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

6.1.5 continuum.aggregator-i

GET / response data model

Controllers

Attribute Name Type Description

Controller Controller[] ICOS Controller instance

Controller

Attribute Name Type Description

Type string ICOS Controller type

Name string ICOS Controller name

Location Location Location of the Controller

ServiceLevelAgreement ServiceLevelAgreement SLA information applied on the Controller

API API API information of the Controller

Any any Complementary Controller data

Location

Attribute Name Type Description

Name string Location name

Continent string Location continent

Country string Location country

City string Location city

Latitude float64 Location latitude

Longitude float64 Location longitude

ServiceLevelAgreement

Attribute Name Type Description

Name string SLA Name

API

Attribute Name Type Description

CommunicationProtocol string Communication protocol used by the API

ProtocolVersion string Protocol version used by the API

DataFormat string Data format used by the API

Authentication string Authentication info used by the API

Authorization string Authorization info used by the API

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 73 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Agents

Attribute Name Type Description

Cluster Cluster[] Cluster instance managed by ICOS

Cluster

Attribute Name Type Description

Type string Cluster type

Name string Name of the Cluster

Location Location Location of the Cluster

ServiceLevelAgreement ServiceLevelAgreement SLA information applied on the Cluster

API API API information of the Cluster

Node Node[] List of nodes of the Cluster

Network Network Network data

Security string Security data

Deployment Deployment[] Deployments running on the Cluster

IoT IoT[] IoT devices on the Cluster

Any any Complementary Cluster data

Node

Attribute Name Type Description

Type string Type of Node

Name string Name of the Node

Location Location Location of the Node

StaticMetrics StaticMetrics Static metrics

DynamicMetrics DynamicMetrics Dynamic metrics

StaticMetrics

Attribute Name Type Description

CPUCores float64 Number of CPU cores

CPUMaxFrecuency string Maximum CPU frequency

GPUCores float64 Number of GPU cores

GPUMaxFrecuency string Maximum GPU frequency

GPURAMMemory string GPU memory capacity

RAMMemory string Node memory capacity

Storage StaticStorage[] Storage static information

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 74 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

StaticStorage

Attribute Name Type Description

Name string Name of Storage

Type string Type of Storage

Capacity float64 Capacity of Storage

DynamicMetrics

Attribute Name Type Description

CPUFrecuency string Current CPU frequency usage

CPUTemperature float64 Current CPU temperature

CPUEnergyConsumption float64 Current CPU energy consumption

GPUFrecuency string Current GPU frequency usage

GPUTemperature float64 Current GPU temperature

GPUEnergyConsumption float64 Current GPU energy consumption

RAMUsage string Current RAM usage

DynamicStorage DynamicStorage[] Current storage usage

NetworkUsage string Current network usage

DynamicStorage

Attribute Name Type Description

Name string Name of Storage

Free float64 Current capacity of Storage

Network

Attribute Name Type Description

ConnectivityType string Type of connection

Latency float64 Network latency

IPAddress string Network IP address

IPGateway string Network gateway

Interface Interfaces[] Network interfaces

Interfaces

Attribute Name Type Description

Name string Name of the Interface

Type string Type of Interface

Speed float64 Interface speed in bytes

IP string IP address of the Interface

SubnetMask string Subnet Mask of the Interface

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 75 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Attribute Name Type Description

IngressUsage string Ingress usage of the Interface

EgressUsage string Egress usage of the interface

Deployment

Attribute Name Type Description

Status string Status of the Deployment

NumberOfContainers float64 Number of containers of the

Deployment

NumberOfApps float64 Number of apps of the

Deployment

Container Container[] Containers of the Deployment

Container

Attribute Name Type Description

Name string Name of the Container

Node string Name of the Node running the

Container

Port Port[] Ports used by the Container

MemoryUsage string Memory usage of the Container

CPUUsage string CPU usage of the Container

IP string IP address of the Container

Port

Attribute Name Type Description

Port string Port name/number

IoT

Attribute Name Type Description

Type string Type of IoT device

Status string Status of the IoT device

Properties Properties[] Properties of the IoT device

IoTNetwork IoTNetwork Network data of the IoT device

API API API information of the IoT

device

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 76 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Properties

Attribute Name Type Description

Resolution string Screen resolution

EngUnits string Engineering units of the

measured

MinScale string Minimum magnitude of the

measured value

MaxScale string Maximum magnitude of the

measured value

TouchScreen string Touch Screen capabilities of the

device

IoTNetwork

Attribute Name Type Description

ProtocolVersion string Protocol version of the IoT

device

Latency float64 Latency of the IoT device

Bandwidth float64 Bandwidth of the IoT device

Example of the response to GET / request.

{

 "10.42.0.63:8080": {

 "name": "10.42.0.63:8080",

 "location": {},

 "serviceLevelAgreement": {},

 "API": {},

 "node": {

 "ocm-worker1.bull1.ari-imet.eu": {

 "name": "ocm-worker1.bull1.ari-imet.eu",

 "staticMetrics": {

 "cpuCores": 4

 },

 "dynamicMetrics": {}

 }

 },

 "deployment": {

 "aggregator": {

 "container": {

 "aggregator-7b55c4fbd7-x8x42": {

 "name": "aggregator-7b55c4fbd7-x8x42"

 }

 }

 },

 "alertmanager": {

 "container": {

 "alertmanager-prom-kube-prometheus-alertmanager-0": {

 "name": "alertmanager-prom-kube-prometheus-alertmanager-

0"

 }

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 77 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 }

 },

 "blackbox-exporter": {

 "container": {

 "prom-kube-prometheus-blackbox-exporter-5868775964-ttq58": {

 "name": "prom-kube-prometheus-blackbox-exporter-

5868775964-ttq58"

 }

 }

 },

 "config-reloader": {

 "container": {

 "alertmanager-prom-kube-prometheus-alertmanager-0": {

 "name": "alertmanager-prom-kube-prometheus-alertmanager-

0"

 },

 "prometheus-prom-kube-prometheus-prometheus-0": {

 "name": "prometheus-prom-kube-prometheus-prometheus-0"

 }

 }

 },

 "coredns": {

 "container": {

 "coredns-6b8bb547dc-hnmvq": {

 "name": "coredns-6b8bb547dc-hnmvq"

 }

 }

 },

 "debug-pod-ubuntu": {

 "container": {

 "debug-pod-ubuntu": {

 "name": "debug-pod-ubuntu"

 }

 }

 },

 "helm": {

 "container": {

 "helm-install-traefik-6tqvs": {

 "name": "helm-install-traefik-6tqvs"

 },

 "helm-install-traefik-crd-qx7mk": {

 "name": "helm-install-traefik-crd-qx7mk"

 }

 }

 },

 "klusterlet": {

 "container": {

 "klusterlet-6d77765698-2k6v4": {

 "name": "klusterlet-6d77765698-2k6v4"

 },

 "klusterlet-6d77765698-9t6r8": {

 "name": "klusterlet-6d77765698-9t6r8"

 },

 "klusterlet-6d77765698-v9dl5": {

 "name": "klusterlet-6d77765698-v9dl5"

 }

 }

 },

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 78 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 "klusterlet-manifestwork-agent": {

 "container": {

 "klusterlet-work-agent-7788fbdd48-cd5q7": {

 "name": "klusterlet-work-agent-7788fbdd48-cd5q7"

 }

 }

 },

 "kube-state-metrics": {

 "container": {

 "prom-kube-state-metrics-7546dd4946-q5fjq": {

 "name": "prom-kube-state-metrics-7546dd4946-q5fjq"

 }

 }

 },

 "lb-tcp-443": {

 "container": {

 "svclb-traefik-7fe5ecef-f298h": {

 "name": "svclb-traefik-7fe5ecef-f298h"

 }

 }

 },

 "lb-tcp-80": {

 "container": {

 "svclb-traefik-7fe5ecef-f298h": {

 "name": "svclb-traefik-7fe5ecef-f298h"

 }

 }

 },

 "local-path-provisioner": {

 "container": {

 "local-path-provisioner-76d776f6f9-8mm62": {

 "name": "local-path-provisioner-76d776f6f9-8mm62"

 }

 }

 },

 "metrics-server": {

 "container": {

 "metrics-server-7b67f64457-fs8t9": {

 "name": "metrics-server-7b67f64457-fs8t9"

 }

 }

 },

 "nginx": {

 "container": {

 "nginx-deployment-85996f8dbd-8662g": {

 "name": "nginx-deployment-85996f8dbd-8662g"

 },

 "nginx-deployment-85996f8dbd-cn8m7": {

 "name": "nginx-deployment-85996f8dbd-cn8m7"

 }

 }

 },

 "node-exporter": {

 "container": {

 "prom-node-exporter-rfklq": {

 "name": "prom-node-exporter-rfklq"

 }

 }

Document name: D3.1 Meta-Kernel Layer Module Integrated (IT-1) Page: 79 of 79

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 },

 "prometheus": {

 "container": {

 "prometheus-prom-kube-prometheus-prometheus-0": {

 "name": "prometheus-prom-kube-prometheus-prometheus-0"

 }

 }

 },

 "prometheus-operator": {

 "container": {

 "prom-kube-prometheus-operator-7649ccb784-6tgld": {

 "name": "prom-kube-prometheus-operator-7649ccb784-6tgld"

 }

 }

 },

 "registration-controller": {

 "container": {

 "klusterlet-registration-agent-59594fccfd-xmdlf": {

 "name": "klusterlet-registration-agent-59594fccfd-xmdlf"

 }

 }

 },

 "traefik": {

 "container": {

 "traefik-57c84cf78d-vdl78": {

 "name": "traefik-57c84cf78d-vdl78"

 }

 }

 }

 }

 }

}

